机器学习笔记--常见算法(9)--support vector machine(SVM)

本文深入探讨了支持向量机(SVM)的代价函数、假设函数和大间距分类思想,强调了SVM在创建具有鲁棒性的决策边界方面的优势。文章详细解释了核函数的概念,包括高斯核函数和如何通过选择合适的标记点来优化计算。此外,还讨论了SVM参数选择对模型的影响,如C和σ的选择,并提到了线性与高斯核函数的应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.SVM cost function 代价函数

SVM cost function的引出
从logistic regression的代价函数开始
在这里插入图片描述
修改logistic regression的代价函数,粉色划线部分为SVM的cost function。
在这里插入图片描述
cost function代价函数 :
m i n θ C ∑ i = 1 m [ y ( i ) c o s t 1 ( θ T x ( i ) ) ) + ( 1 − y ( i ) ) c o s t 0 ( θ T x ( i ) ) ] + 1 2 ∑ θ j 2 \underset{\theta}{min}C\sum_{i=1}^m[y^{(i)}cost_1(\theta^Tx^{(i)}))+(1-y^{(i)})cost_0(\theta^Tx^{(i)})]+\frac{1}{2}\sum\theta_j^2 θminCi=1m[y(i)cost1(θTx(i)))+(1y(i))cost0(θTx(i))]+21

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值