在空战与AI中列举了不少国外在智能空战领域的研究成果和进展,在那些成果的基础上,近年各国都相继加大了航空军事智能的研发力度,在这里对一些值得关注的进展进行跟踪整理和持续更新。
ACE——“空战演进”项目
2019年6月,美国国防高级研究计划局(DARPA)战略技术办公室(STO)发布了“空战演进(Air Combat Evolution,简称ACE)”项目,项目通过“阿尔法狗斗“竞赛和4个技术领域,拟在5年内分3个阶段推进,预计投入 总金额6360万美元。ACE项目是为了实现DARPA新型作战概念——“马赛克战”(Mosaic Warfare)而开展的项目之一。在“马赛克战”设想下,人类将在复杂的环境中(其特征是耦合、非线性、异构和可适应性)与自主武器系统紧密协作,使用人工智能战术进行战斗。有人平台将在所有作战域指挥大量分散的无人系统,如果操作员对作战自主权不信任,这一作战愿景就无法实现。ACE项目将通过实现人-机协作的近距空中格斗增强人们对自主作战的信任。同时,ACE将实现人对自主作战系统信任度的测量、校准及预测,并提升人对自主作战系统的信任度。最终,ACE项目会将自主近距格斗应用于更复杂、异构、多机交战的作战场景,为未来实时、战役级的“马赛克战”试验奠定基础。项目将分三阶段走:第1阶段(18个月),通过建模及仿真进行演示验证;第2阶段(16个月),应用于小型无人机;第3阶段(16个月),应用于典型作战飞机。该项目将技术分为以下四个领域:(1)技术领域1:建立局部作战自主系统(包括单个和编队作战;(2)技术领域2:建立和校准对局部空战行为的信任;(3)技术领域3:将自主作战系统和信任评估扩展到全局作战(异构多机);(4)技术领域4:建设全尺寸空战试验基础设施[1] [2]。
2022年2月,DARPA发布针对ACE项目第2阶段第4技术领域(全尺寸飞机)的招标书。招标书要求工业界提出将F-16飞机改装成“人在回路中”的安全沙箱式试验飞机的建议。中标公司将改装并测试两架F-16D战斗机,以加装此前开发的视距内自主算法,并提供适当的接口,整合已开发的人机界面等,实现视距内实战交战。
AI用于飞行员训练
据军事训练技术供应商Aptima公司网站2021年11月报道,其与美国空军研究实验室(AFRL)签订了一份为期四年价值520多万美元的合同,以开发一个自动化训练管理软件,将人工智能应用于空军飞行员训练。在以往的飞行训练中,受训者需要与人类专家对抗,学习如何在战斗中作战和生存。但这些专家培训师成本高昂,且需求量很大,因此空军正在转向探索人工智能填补这一缺口的潜力。然而,早期的自动训练系统大多采用基于规则的专家系统,只能生成呆板的对抗脚本,训练效率和质量低下。而基于人工智能的训练系统则更为灵活,更加适用于飞行学员的对抗性训练。此外,Aptima还致力于利用AI飞行员的不同表现,根据受训飞行员的经验水平,将AI飞行员与受训飞行员进行组织和匹配。该系统将实时使用训练数据,根据每个人的情况进行个性化学习,最大程度地提高学员的技术水平。这种“适应性学习”模型不是传统的“一刀切”的训练方法,而是大规模实施个性化学习的一种手段。人工智能训练对手的出现,有望进一步提高空军飞行员模拟训练的效率和质量[3]。
GhostPlay——无人机集群人工智能决策系统
据传感器解决方案提供商亨索尔特(HENSOLDT)公司网站2021年11月报道,其正与汉堡海尔马特·斯克米特大学展开合作,为德国联邦国防军(DTEC)开发无人机集群战术级人工智能快速决策系统。该技术开发项目名为GhostPlay,整个项目为期3年,将于2024年底完成。GhostPlay项目重点研究人工智能技术能将军事行动决策加快到何种程度,以及采用人工智能技术实施决策能产生哪些有利条件和行动风险。与此同时,该项目还要重点研究以人工智能技术为基础的辅助决策系统怎样实施决策,才能保证无人机集群传感器-效应器网络执行复杂的压制敌防空火力(SEAD)任务。此外,该项目还要研究无人机集群实施防御作战时,各个作战单元如何协同才能取得最优的防御效能。DTEC要求亨索尔特公司在研究这些问题时,还要将战争伦理因素考虑在内[4]。
FightTonight——AI结合游戏交互技术加快作战规划
AFRL于2021年12月启动“Fight Tonight”项目,项目周期4年半,总经费为9900万美元。项目的主要目标是通过将AI驱动的规划与交互式游戏相结合,显著减少空中任务指令(ATO)的规划周期,提高指挥官决策速度,将制定战区级进攻计划的时间从36个小时缩短至4个小时。该项目体现了美国空军最新人工智能创新,研制的原型最终将与外部系统交联,支撑全场景尺寸下的作战决策。该项目将AI与游戏交互技术整合至单一用户界面,该界面可连接空中作战中心任务规划人员使用的数据源。项目的两大技术支撑为人类与AI协作规划系统+交互式游戏引擎,AI技术可大幅缩短制定进攻计划的时间,游戏交互技术能用于生成、评估各种替代性计划方案,比分析数据表格更直观。项目第一阶段将在两年半内研制技术原型,第二阶段计划在两年内进行试验与整合,随后部署于空中作战中心[5] [6]。
深度强化学习飞行控制器
2021年3月,作为自主空战行动计划(Autonomous Air Combat Operations Program)的一部分,AFRL的自主能力小组和美国试飞员学校在喷气式飞机上测试了第一个深度强化学习飞行控制器。这个名为“Have Cylon”的飞行测试包括使用单架飞机(Calspan LJ-25 Learjet)或两架飞机(Calspan LJ-25 Learjet 和 F-16 Fighting)。人工智能飞行控制器在模拟中使用强化学习进行训练,然后移植到Learjet上。研究人员设计了飞行任务,通过零次学习转移(zero-shot transfer)方法,解决了从模拟环境到真实环境的迁移挑战,并针对任务进行了一系列的飞行演习[7]。
Calspan LJ-25 Learjet
TIDAS-4D——无人机战术智能检测和规避系统
2021年3月,辛辛那提大学航空航天工程与工程力学系和NASA位于加利福尼亚州的艾姆斯研究中心开发了一种新型小型无人机交通管理系统,可以自主识别、跟踪和管理大规模小型无人机操作。这项研究主要集中在开发一种智能冲突检测和解决系统,该系统使用高层级启发式和低层级模糊控制器(high-level heuristics and a low-level fuzzy controller)来保持小型无人机相互分离,称为无人机战术智能检测和规避系统(Tactical Intelligent Detect and Avoid System for Drones,简称TIDAS-4D)。TIDAS-4D系统仅使用当前状态信息即可解决潜在冲突,无论是否了解入侵者意图[7] [8]。
ATARS——机载战术增强现实系统
2020年11月,Red 6和EpiSci公司宣布实现了世界上第一次增强现实近距空中格斗,这次空战的对抗双方为一架真实飞机和一架模拟的反应性敌机。人类方是由真人驾驶的Berkut 540型验证机,敌机是由Red 6公司提供的机载战术增强现实系统(Airborne Tactical Augmented Reality System,简称ATARS)以计算机生成的投影形式出现在该机飞行员使用的增强现实头盔显示器中,该仿真敌机搭配了EpiSci公司提供的战术AI系统(Tactical AI)以进行战斗中的战术动作选择,其外形采用了中国空军歼-20战斗机的造型。本次试验旨在将AI空战从仿真环境带入真实世界。此外,EpiSci利用其先前在DARPA的AlphaDogfight计划中的工作,在增强现实系统中植入其战术AI技术。通过这种方式,以前只能在传统的地面模拟器中运行的模拟空战,现在可以引入到真实的飞机驾驶舱了[9] [10]。
Skyborg自主无人作战飞机
2019年3月,美国空军战略发展规划与实验办公室(Strategic Development Planning and Experimentation,简称SDPE)为自主无人作战算法验证平台(Skyborg)项目发布了能力信息征询书。拟在2023年推出Skyborg作为人工智能空中对抗实验验证平台。Skyborg项目旨在部署一种模块化、类战斗机的无人飞行器,用于快速更新和迭代更复杂的人工智能技术,具备可消耗、自主性、开放架构和弹性等特征。Skyborg将直接支撑《2018年美国人工智能战略》和2019年发布的《人工智能倡议》,即在满足紧迫业务的同时,保持美国在智能空中对抗领域的领导地位。Skyborg系统可通过以下两种模式参与空战:担任人工智能副驾驶和自主驾驶无人机。第一种模式通过集成在有人战斗机中作为虚拟副驾驶,以减轻人类飞行员的负担。第二种模式是可以自主驾驶并集成在无人平台上的人工智能系统。Skyborg项目主要是开发软件和控制系统,并不会生产飞行器平台本身,因此将集成在已有的有人 机或者无人机上。其基于开放性系统架构的设计,使其很可能集成在任何无人作战平台上,如Kratos公司的隐形无人机XQ-58A Valkyrie、波音公司的QF-16、BQM-167等无人机上[11]。
适用于搭载Skyborg系统的低成本的模块化无人战斗机(概念设计图)
AXQ-58A Valkyrie