自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

人机与认知实验室

北京邮电大学人机交互与认知工程实验室

  • 博客(4620)
  • 收藏
  • 关注

原创 人机协同中的层次映射关系研究:从自然语言处理到智能系统设计

具体而言,我们将从底层到顶层依次分析"人类关注对象"与"机器感知实体"、"人类任务事态"与"机器任务指令"、"人类目标事实"与"机器目标结果"之间的映射机制,探讨各层映射的技术实现、挑战及未来发展方向。本文借鉴自然语言处理中的三层映射思想,构建了人机协同中的层次映射框架,将人类意图与机器执行之间的关系划分为三个层次:底层的"人类关注对象"与"机器感知实体"映射、中层的"人类任务事态"与"机器任务指令"映射、顶层的"人类目标事实"与" 机器目标结果"映射。中层:"人类任务事态"与"机器任务指令"的映射。

2025-09-08 00:01:50 241

转载 中方向20多国,发出共建月球科研站邀请

建造国际月球科研站,这一高大上的项目,不仅展示了中国在太空探索领域的雄心壮志,也带来了丰富的国际合作机会。环顾当下的世界局势,国际月球科研站的建设,不仅仅是一次科技的飞跃,更是一份关于合作的宣言书。作为最早一批研究月球的国家,美国当然有自己的想法,而且他们的航天实力也不容小觑。在近期的上合组织峰会上,中方以一个引人注目的表态,吸引了世界的关注:“欢迎各方使用北斗卫星导航系统,请有条件的国家参与国际月球科研站建设。所以说,现在的合作成果,自然是远远不够的,因此我们也就需要,继续向国际社会宣传国际月球科研站。

2025-09-08 00:01:50 69

转载 DF-61真正可怕的,根本不是射程2万公里……

咱先说个反直觉的观点,DF-61真正可怕的,根本不是射程2万公里,或者能带10个分弹头,这些纸面数据,而是它彻底撕掉了美国反导系统的“皇帝新衣”。更绝的是,配合DF-61形成“饱和突防”战术,先用DF-61消耗你90%拦截弹,再让DF-5C精准补刀,这套组合拳打出来,谁不破防?而且,这还不是技术差距,是代差上的碾压,就说DF-5C,这个看似老旧的井射导弹,如今能同时锁定12个目标,实施外科手术式核打击。换句话说,中国用一发导弹,逼着全世界,重新核算了一遍战略底线,而这盘大棋,才刚刚开局!

2025-09-08 00:01:50 15

原创 AI对未来指挥控制系统可能造成的危害

在2025年的一次军事行动中,AI系统建议的攻击导致了意外的平民伤亡,但由于系统决策过程的不透明性,难以确定责任归属。在指挥控制系统中,这种信息处理失误可能产生灾难性后果,如在情报分析环节,AI系统可能基于历史数据中的统计规律,错误关联敌方部队部署模式,或过度夸大某类威胁的概率。其次,AI系统的"黑箱"特性可能导致不同系统之间的互信度下降。为了应对这些挑战,军事组织正在探索多种解决方案 ,包括建立统一的AI标准和接口规范、开发跨平台的AI中间件、设计可互操作的AI架构,以及实施联合训练和验证机制。

2025-09-07 11:17:08 402

转载 原创丨“打外星”超级武器曝光,原来中国的目标真的是星辰大海!

说白了,中国人的梦想就是星辰大海,就是面相宇宙要安全,面向深空要资源,面向科技要未来,我们不要搞人类内卷,我们不搞相互拆台,我们就是要领导全人类奔向更远大的目标。科学家们找到的证据显示,这两次撞击后地球至少还有5次遭小天体撞击,给地球上气候环境带来巨大灾变:完全像冬天一样,温度巨降,冰盖扩大,海水倒退,整个生态环境发生巨大变化,生物大批死亡。美西方总觉得中国是威胁,但他们不懂中国人,中国的太空计划不是针对他们,他们也根本不在中国的目标当中,中国人的太空长征,是真的星辰大海,而且这一切的计划都只是刚刚开始!

2025-09-07 06:14:26 11

原创 人机协同中的知、技、智、慧

人类会基于历史经验、哲学思考、人文关怀,洞察事物本质(如从技术发展中,总结出“科技是第一生产力,但需与伦理共生”的规律)、预判长期趋势(如基于当前AI发展,提出“人机共生而非人机对立”的未来方向)、定义终极价值(如制定“碳中和”目标,追求人类与自然的和谐共生),为整个人机协同系统设定“方向与意义”,避免机器陷入“唯效率论”的误区。人类是“慧”的主导者、“智”的校准者、“知与技”的赋能者,二者通过层级协同,实现从“工具使用”到“价值共创”的智能升级。2. 技(技能):机器强于“执行”,人类强于“适配”

2025-09-07 06:14:26 682

原创 AI,或许比核武器更危险

不可否认,AI的发展还面临着一系列伦理道德问题,如AI是否具有自主意识和权利、AI的决策是否符合人类的道德价值观等,这些问题可能会引发人类社会对自身存在和发展的深刻反思和困惑,而核武器的使用虽然也存在一些伦理道德争议,但主要是在战争的合法性和人道主义等方面。AI系统的复杂性和不可控性导致其行为和后果难以预测,一个看似微小的错误或漏洞,可能会在复杂的系统交互中引发一系列连锁反应,导致无法预料的灾难性后果,如金融市场的崩溃、能源系统的瘫痪等,而核武器的爆炸威力和影响范围虽然巨大,但相对较为明确和可预测。

2025-09-06 08:20:58 734

原创 人机环境系统智能的协同:超级智能AI+实现的新路径

例如,人类用AI分析气候数据,AI的计算结果会启发人类提出新的气候模型(机器影响人),人类的新模型又会优化AI的算法(人影响机器),环境的实时变化(如极端天气)又会调整二者的交互方式(环境影响人-机) ,最终涌现出"人类单独无法发现、机器单独无法生成"的气候认知能力。按胡塞尔"生活世界"理论:数学/物理的"形式化世界"是从人类" 生活世界"(充满语境、价值、直觉的真实交互场景)中抽象而来的"第二世界",它剥离了认知的"主体性"与"情境性"。未来智能系统需融合客观计算(数据驱动)与主观算计(价值驱动);

2025-09-05 13:49:16 699

转载 “人工智能艺术家”的崛起:弥合“大脑鸿沟”,重塑人类创造力

它更像是一面镜子,映照出人类对创造力、智能乃至自身存在的既有观念,从而迫使人类从左脑主导的、以效率和功能为核心的视角中暂时抽离,去重新审视右脑所代表的、那些难以量化但至关重要的价值:情感深度、情境智慧、具身体验和意义构建。通过与“人工智能艺术家”的互动、合作乃至博弈,人类或许能够更好地理解人类创造力的独特之处,从而在技术的浪潮中,不仅保持人类的创造力,还能在一个更整合、更平衡的认知基础上,实现其升华与飞跃。然而,这一新范式也迫使人类直面一系列根本性的问题,这些问题关乎创造力的本质和人类艺术的独特价值。

2025-09-05 07:53:50 14

原创 态势感知中态、势向量空间的比较意味着事实与价值向量空间的比较

在态势感知的经典三层模型(Endsley模型)中,“态”(Perception/State)对应对当前系统状态的感知(如传感器数据、设备运行指标),“势”(Projection/Trend)对应对未来状态的预测(如故障趋势、攻击路径)。:通过历史态数据的统计学习(如时间序列分析),挖掘态的演化规律(如“流量峰值后30分钟内故障概率增加”),生成基于事实的趋势预测(事实性势)。——态势感知中的“势”虽融合价值,但最终仍服务于对“态”的更优理解与控制,其核心仍是“事实主导下的价值引导”,而非价值对事实的替代。

2025-09-05 00:02:23 919

原创 注意!无人系统中仍有人

无论是自动驾驶汽车的路径规划算法,还是工业机器人的运动控制模型,其核心设计思路、价值判断(如“避障优先级高于效率”)、甚至伦理边界(如自动驾驶的“电车难题”设定),都源于人类的知识、经验和价值观。即使是基于深度学习的AI系统,其训练数据的筛选、标注,以及模型的迭代优化,也完全依赖人类的参与——系统“学会”的能力,本质是人类知识的数字化投射。例如,工业生产中的无人质检设备,它会检查产品的质量并生成质量报告,这些报告可以被工厂的管理人员查看,以便他们了解生产环节的质量状况并采取相应的措施。

2025-09-04 15:58:04 254

原创 其实,阅兵是一种善,是上善若水的展示,也是……

其实,阅兵是一种善,是上善若水的展示,也是不择屈人之兵的能力展示,是一种深刻的哲学升华,这不仅突破了“武力展示”的表层,更揭示了阅兵作为,其核心是通过“柔性的力量展示”实现“刚性的和平维护”。“上善若水”出自《道德经》第八章,老子以水喻德,强调其“善利万物而不争,处众人之所恶”的包容性与超越性。阅兵的“善”,正契合这一哲学内核——它以“非对抗性”的方式传递力量,以“仪式化”的表达凝聚共识,以“文化性”的符号滋养和平。

2025-09-04 08:22:41 943

原创 人机环境系统智能矩阵理论

智能矩阵能通过持续与环境、人类的交互,自主识别“能力边界”(如发现无法处理的新任务),并主动寻求学习机会(如向人类提问、利用外部知识库)。——机器的智能需通过与人的交互“被激活”,人类的决策也需借助机器的扩展能力(如计算速度、记忆容量)。例如,自动驾驶汽车不仅需识别道路标志(机器能力),还需理解乘客的“赶时间”意图(人类意图),并通过车路协同系统(环境支持)调整行驶策略(共生决策)。:具备生物智能,拥有主观意图(如目标、偏好、情感)、具身认知(如感官体验、动作记忆)和社会属性(如文化背景、协作规则)。

2025-09-04 07:29:45 622

转载 斯坦福教授直言:大部分人用 AI 的方式完全是错误的!一个简单转变,让 AI 助你提升10倍学术创造力!

3)是否便于同行复现。请你以一位具备医学数据建模背景的SCI论文审稿人身份,帮助我撰写方法章节,包括但不限于:数据来源、变量说明、预处理方法、模型构建流程、评估指标与可视化说明等内容,要求语言正式、结构清晰,并提出我可能忽略的统计细节。Jeremy Utley教授在访谈中,也讲述了一个设施管理员的案例,这个管理员不懂代码、也没有技术背景,但他通过一次次与AI对话提问,把工作中遇到的问题、操作步骤、关键需求逐一向AI讲清楚,最后在AI的协助下搭建了一个内部自动化工具,帮助公司节省了超过 7000 个工时。

2025-09-04 06:59:20 21

原创 未来智能社会什么样?从AI到AI+

共创分享主要是指在人工智能的发展过程中,各参与主体,包括政府、企业、科研机构、个人用户等,共同参与创新的过程,并共享创新的成果,如政府通过出台政策鼓励企业和科研机构开展人工智能相关的研发合作项目,企业和科研机构联合研发出新的智能硬件产品,然后将这些产品推向市场,同时也将相关的技术成果分享给其他有需求的企业和开发者。从社会环境角度看,AI 可以融入社会的各个层面,如交通、教育、金融等,改善社会运行效率和生活质量,但同时也要注意 AI 对社会结构和就业等方面可能带来的影响,并通过合理的政策和措施进行引导。

2025-09-04 00:01:56 451

原创 Palantir也是一个人机环境交互系统

Palantir 的系统在国防、金融等数据密集型且对数据安全要求较高的领域表现出色,但如果在一个数据量小、业务流程简单的环境中使用,可能会因为功能过于复杂而导致资源浪费,也会影响使用者对它的感觉,甚至会认为它的存在是多余的。就像一个没有编程基础的人,面对 Palantir Foundry 中的一些高级数据建模功能,可能会因为无法正确操作而无法发挥工具的效用,甚至可能因为错误的操作而得出误导性的结论,从而“减分”。如果缺乏足够的培训,他们可能会被大量的数据信息淹没,难以快速获取有用信息。

2025-09-04 00:01:56 337

原创 在态势感知中,由态生成势与由势还原到态的过程是如何的?

指当前可观测的。

2025-09-04 00:01:56 809

转载 大脑的秘密

赫布法则“神经元之间的同时激活增加了它们之间的突触强度。”促成了人工神经网络。人机协同的功能分配与能力重塑带来了抑制。AI+的未来在于人、机、环境的有机协作。

2025-09-03 06:25:52 17

转载 智能社会什么样?“人工智能+”新政划重点!育见新闻

更为关键的是,该系统可打破学科壁垒,通过跨领域知识图谱的构建,将数学、物理、化学等学科知识进行深度关联与融合,形成多维度认知网络。其三,系统韧性欠缺影响复杂场景的可靠性。在此背景下,我国秉持“以人为本”“智能向善”的理念,积极作为,提出《全球人工智能治理倡议》,发起成立世界人工智能合作组织,为推动全球达成治理共识持续发力、引领方向。它使人工智能突破单一技术应用的局限,与经济社会各层面深度交融,进而催生新的发展模式与增长动力,这种融合既是中国人工智能发展战略的核心,也是推动经济社会高质量发展的关键路径。

2025-09-03 00:02:41 43

转载 易评估:美国国防高级研究计划局“空战演进”项目解析

DARPA发起的一个研究项目,其核心目标是通过人工智能(AI)和机器学习(ML)技术,开发出能够在动态、高风险的空中格斗(Dogfighting)环境中自主执行战术机动并击败敌机的代理(Agent),并在此过程中建立、验证和提升人类飞行员对自主系统的信任,最终实现有人机-无人机编队(Manned-Unmanned Teaming, MUM-T)的高效协同作战。②信任校准:通过生理传感器(眼动仪、脑电图等)客观测量飞行员对AI的信任度,避免“过度信任”或“信任不足”,确保信任水平与AI的实际能力相匹配。

2025-09-02 10:56:32 238

原创 真实的人机融合指控系统常常是想象远大于真实

针对现有算法的局限性,研发更先进、更可靠的算法,同时优化系统架构,提高系统的容错能力和抗干扰能力,在智能工厂的指挥控制系统中,采用冗余设计和多节点协同工作的方式,即使部分硬件或软件发生故障,系统仍然能够正常运行。还有,需要在系统开发过程中,进行严格的测试和验证,模拟各种复杂场景,对系统的性能和可靠性进行评估,如在航空指挥控制系统中,通过大量的飞行模拟测试,确保系统在各种极端天气和飞行条件下都能正确指挥飞机。人机融合的指挥控制系统是指将人类的智能与机器的智能相结合,形成一个综合的决策和控制系统。

2025-09-02 07:53:35 547

转载 统计概率与复杂性

这些模型考虑了大量变量的概率分布,通过对可能的气象情况的大量随机抽样,给出未来天气变化的近似结果,虽然不能准确预知每一分钟的变化,但在实际生活中已经具有很高的使用价值。通过收集历史的市场交易数据,如股票价格、商品销售量等,利用统计分析方法,如回归分析、相关性分析等,可以发现不同因素之间的关联性,找出市场的潜在趋势,为投资决策和企业战略规划提供依据。在医学研究中,对某种疾病的成因进行统计分析,如果样本数据受到测量误差的影响,或者样本数量过少无法反映疾病的全貌,那么得出的关于病因和发病趋势的结论就可能不准确。

2025-09-02 06:59:36 15

转载 斯坦福大学突破性发现:AI大模型其实并没有真正“理解”语言

研究团队发现,即使是表现最出色的大型语言模型,实际上也只是在进行极其精密的"模式匹配"游戏,而并非真正理解语言的含义。如果一个医疗AI系统只是在模仿训练数据中的模式,而不是真正理解疾病的机理,那么当遇到训练数据中未充分覆盖的病例时,它可能给出危险的错误诊断。实验的设计思路源于一个简单的观察:如果AI真的理解了语言的含义,那么它应该能够处理各种表达同一概念的不同方式,就像人类能够理解"今天天气很好"和"今日气候宜人"表达的是同一个意思。这种现象表明,模型缺乏真正的"元认知"能力,即对自己知识边界的认识。

2025-09-02 06:49:36 19

原创 人形机器人具身、离身、反身方面的不足与缺陷

人类通过内耳前庭系统、肌肉本体感受器和视觉的协同实时调整重心(如走在摇晃的船上),而机器人的平衡依赖惯性测量单元(IMU)+力觉传感器+预设算法,对突发扰动(如被侧面轻推)的恢复时间长达0.5-2秒,且无法通过“身体记忆”优化平衡策略(如人类多次摔倒后会自动调整步幅)。人类能通过观察行为结果(如杯子是否被成功拿起)反思动作策略(如是否需要更轻的力度),而机器人仅能根据预设的“成功条件”(如末端执行器接触到杯子)判断是否完成任务,无法评估“结果的合理性”或“行为的副作用”。

2025-09-02 06:12:55 301

转载 【MIT】2025年商业人工智能现状

这些框架构成了新兴的智能体网络的基础,这是一个由可互操作的智能体和协议组成的网络,用动态协作层取代了单。我们的数据揭示了一个清晰的模式:取得成功的组织和供应商,是那些积极解决学习、记忆和工作流程适配问题的,而失败的组织和供应商,要么是在打造通用工具,要么是试图在内部开发相。更引人注目的是,外部构建的工具的员工使用率几乎是内。这种模式表明,虽然销售和营销吸引了大部分关注和投资,但对于那些愿意跳出明显的应用场景,真正跨越生成式人工智能鸿沟的组织而言,后台办公自动化可能会带来更为显著且可持续的。

2025-09-02 06:12:55 46

转载 分化本体论:一个新的哲学框架

分化本体论:一个新的哲学框架Ontology of Differentiation: A NewPhilosophical Frameworkhttps://papers.ssrn.com/sol3/papers.cfm?abstract_id=5254776“分化本体论”提出了一种新的形而上学框架 ,将“分化”(differentiation)确立为基本的本体论范畴,其基础是一种称为“潜能性”(Potentiality)的前本体状态。不同于以实体为基础的本体论(难以解释变化)或以过程为基础的本体论(可能陷

2025-09-01 23:03:40 31

原创 中美AI竞争:美重AGI,中侧AI+

在中美AI竞争中,美国更注重通用人工智能(AGI)的开发,聚焦其安全性和长期发展,期待通过AGI的突破,撬动经济与军事力量等支柱。美国的战略更偏向于长远的、基础性的研究,追求技术的根本性突破,期望在AI的最前沿领域取得主导地位。在AI+应用方面将继续拓展,如在自动驾驶、医疗AI等领域已经有较好的发展基础,未来有望在这些领域进一步深化应用,提高行业的整体智能化水平。AGI的实现面临诸多技术和伦理挑战。由于有庞大的市场需求和丰富的应用场景,AI+相关技术可以迅速转化为实际的产品和服务,产生经济效益和社会效益。

2025-09-01 10:12:22 668

转载 人形机器人,更快更高更强

焦继超认为,“实训”能够让人形机器人获得真实环境下的性能验证和优化机会,还可以积累大量高质量场景数据,用于算法训练、工业场景模型优化等,“目前,我们已累计投入超过100台工业人形机器人在实际工厂环境中实训,能实现人类水平30%—40%的效率。今年的世界人形机器人运动会,实现了赛场内外的5G—A网络全覆盖。优必选副总裁兼研究院院长焦继超认为,人形机器人的核心零部件需要提升稳定性,逐步缩小体积,“比如,谐波减速器、高功率密度电机、各类传感器等的发展,就能带动人形机器人关节模块和灵巧手的设计与制造水平提升。

2025-09-01 08:00:11 27

转载 探索宇宙的第三范式:计算科学

自古以来,人类探索宇宙奥秘的征途主要依赖两大范式:以欧几里得和牛顿为代表的理论推演,即所谓的演绎法;以及以伽利略和法拉第为代表的实验观测,即所谓的归纳法。然而,自20世纪中叶以来,一股全新的力量以前所未有的深度和广度重塑了科学探索的版图,正在形成与前两者并驾齐驱的第三大科学探索范式——计算科学(Computational Science)。它并非简单的计算机编程,而是一门利用计算机构建数学模型、进行大规模模拟仿真,以研究、理解和预测复杂现象的宏大学科。从模拟黑洞碰撞的引力波,到预测蛋白质的三维结构,计算科学

2025-09-01 00:11:41 29

原创 人机环境系统智能中的动机、价值、目标系统与态、势、感、知的关联

在人机环境系统智能(H–M–E System Intelligence)中,“动机-价值-目标系统”与“态-势-感-知”并不是两条平行线,而是一张互为输入-输出的动态网。在人机环境系统智能中,MVG 与 SSAP 不是单向的命令-执行,而是“价值-感知”双螺旋:价值给感知以方向,感知给价值以校正;当目标从“击败对手”切换为“最小化社会恐慌”,系统会把未来演化空间的剪枝策略从“摧毁度”改为“情绪稳定度”。• 知(Perception):经注意、过滤、解释后的高层表征(情境理解、意图推断、风险估计)。

2025-09-01 00:03:26 279

转载 注意力塌缩:关于“秩”的误会与真相

在工程实践中,很多开发者报告在 GPT-2 的不同模型中,attention 矩阵的有效秩显著低于序列长度(比如 “几十 vs 数千” 的对比),但这些数字通常来自实际测算而非公开文献,可能因实验设定不同而存在波动。此外,有报告指出在如 LLaMA-65B 等大模型中,当上下文长度为 4k 时,有效秩占比可能低于 3%,这也反映了一种开发者经验,尚未在公开论文中正式量化。但学界在说‘低秩瓶颈’时,指的不是这个严格意义的满秩,而是‘有效秩’——也就是奇异值谱里真正起作用的信息维度。非零奇异值的个数,就是秩。

2025-09-01 00:03:26 24

原创 信息中的态、势、感、知

(2)信息通道、强度和秩的综合影响:信息通道的数量和多样性、信息的强度、以及信息秩的塌缩方式,共同作用于“态、感、知”,进而影响“势”。例如,在一个信息丰富、通道多样且强度适中的环境中,个体可能会处于积极的“态”,产生良好的“感”,并加深“知”,从而形成有利的发展“势”。(1)态、势、感、知的相互作用:“态”影响个体的感知和认知能力;通过以上分析,可以看出信息通道的多少、信息的强度大小、信息秩的塌缩等现象与“态、感、知”之间存在着复杂的相互作用关系,这种关系在不同的环境和个体条件下会呈现出不同的特性。

2025-09-01 00:03:26 281

原创 人机协同的三级抽象

这类似于数学中运算规则的抽象,即机器根据建立的算法和模型规则,执行复杂的决策和行为。这三个抽象层次共同构成了人工智能的基础和核心,从数据的获取和处理开始,通过特征提取和表示进一步抽象化,最终利用算法和模型进行高级的智能决策和推理。这三个抽象层次共同构成了人类智能的核心,从感知和体验开始,通过语言和符号的表达,最终到抽象思维和理论框架的建立和应用。这三级抽象反映了人机交互在不同层次上的复杂性和发展,从基础的用户界面到高级的智能算法,每一级都为人类和计算机之间的互动提供了更高效、更智能的框架和工具。

2025-09-01 00:03:26 722

原创 小心!未来指控系统中的人机协同将会更麻烦

随着AI技术(尤其是大模型、多模态智能、自主决策等方向)的快速演进,人机协同在指挥控制系统(C2系统)中的角色正从“辅助工具”向“深度共生”演变。这一趋势虽能显著提升系统效能,但也因AI能力的突破性增长与人机认知、权责、交互模式的固有差异,催生出更复杂、更隐蔽的潜在问题。也就是说,随着人工智能水平的不断提升,未来的人机协同在指控系统中的应用虽前景广阔,但会引发更多、更复杂的问题。

2025-08-31 08:54:21 780

转载 名著“哥德尔、艾舍尔、巴赫(GEB)”中的谬误(一)公理系统的可证性与真理性

在这两章结束的时候,你应该对形式系统的能力有一个很好的了解,以及为什么数学家和逻辑学家对它们感兴趣。的写作风格实在是很奇特,在一部涉及严格的数理逻辑形式化理论[参见下文]的科普著作中,不是使用最通俗易懂的自然语言表达来给读者展示出清楚明白的逻辑链条,而是使用大量的文字游戏、极其跨界的比喻比拟。实话实说,从科普的角度来说,笔者本人并不很欣赏 GEB 这本书,不认为该书是一本通俗易懂、准确严谨(笔者本人认为好科普的两个必要条件)的科普著作。),那么任何不具备健全性的形式理论,可证的形式定理未必是真的,亦即,

2025-08-31 04:56:28 18

原创 大语言模型对未来指挥控制系统可能造成的危害

大语言模型(LLM)作为人工智能领域的突破性技术,正在快速渗透到指挥控制系统中,尤其在情报分析、决策支持、人机交互等环节展现出潜力。然而,其技术特性(如概率生成、数据依赖、黑箱决策等)与指挥控制系统对的核心需求存在天然张力,可能引发一系列潜在危害。大语言模型还可能会对C4ISR系统造成多方面的危害,如产生数据污染,通过错误的信息输入导致系统决策失误;引发信息误导,生成不准确或虚假的情报内容,干扰作战人员的判断;造成知识混乱,输出不合逻辑或与军事常识相悖的内容,影响作战计划的制定;

2025-08-31 04:49:36 739

原创 也谈人机环境系统智能中的动机、价值与目标系统

AI的价值系统是决策的“底层准则”,决定其在冲突场景(如资源分配、风险权衡)中的选择。若AI的目标系统能超越“短期任务”,在动态环境中自主设定“长期生存目标”(如科学研究AI为探索宇宙奥秘,主动调整研究方向),则可能表现出类似“自由意志”的行为——尽管这仍是基于算法的“自组织”,但与人类的“自主选择”具有形式上的相似性。AI的目标系统是行为的“终极指向”,传统AI的目标多为短期任务(如“完成订单配送”),而在人机环境中,需与人类的长期需求(如可持续发展、社会福祉)深度绑定,形成“动态演化的长期目标”。

2025-08-31 00:01:11 743

原创 人机协同从功能分配到能力创造

人机协同的演进,本质是从“工具式分工”向“共生式共创”的范式跃迁。传统人机协同以为核心——将任务拆解为“人类擅长”与“机器擅长”的模块(如工人操作机床、AI分析数据),通过优化分工提升效率;而现代人机协同正转向——通过人机认知融合、知识共生与动态交互,突破单一主体的能力边界,共同生成“1+1>2”的新能力(如AI辅助科学家发现新材料、人类与机器人协作创作艺术)。这一转变不仅是技术进步的结果,更是人类对“智能扩展”需求的深层映射。一、人机协同的升级,源于与。

2025-08-31 00:01:11 728

原创 阅兵,一次全方位的人机环境系统工程

阅兵,作为国家展示国防实力、军队形象与精神风貌的盛大仪式,本质上是一场。其成功实施依赖于“人(受阅官兵、科研保障人员)、机(受阅装备、技术平台)、环境(自然条件、场地设施)”三要素的深度融合与协同优化,贯穿从装备研发、训练筹备到现场执行的全流程。以下从系统工程的视角,拆解阅兵中“人-机-环境”的协同逻辑与技术内涵。一、阅兵的核心主体是“人”,但这里的“人”绝非孤立的个体,而是,其能力需通过体系化训练与协同机制实现“1+1>2”的效应。

2025-08-31 00:01:11 1304

原创 人机融合智能在现代战争中日渐增强的作用:俄乌启示

俄乌冲突作为21世纪以来最典型的“智能化战争”之一,其战场形态已从传统的“人力密集型”向“人机融合智能主导”加速演进。在这场冲突中,——即人与AI系统在认知、决策、行动层面的深度协同——已从辅助工具升级为决定战场态势的关键变量。其作用贯穿情报侦察、无人作战、指挥控制、网络攻防等全链条,深刻改变了战争的“游戏规则”。以下结合俄乌实战案例,分析人机融合智能的具体作用与启示。一、现代战争的核心是“信息优势”,而人机融合智能通过与的结合,彻底提升了战场态势感知的效率与准确性。

2025-08-30 09:26:50 1215

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除