- 博客(4469)
- 收藏
- 关注
原创 人机协同中数学、物理、心理、伦理、管理等推理机理如何融合?
强化学习与反馈优化。同时,也要提高公众对人机协同的认知和理解,促进人机协同技术的广泛应用和接受。鼓励数学、物理、心理、伦理、管理等不同学科领域的研究人员和从业者开展跨学科的研究与合作,共同探索推理机理融合的理论和方法,促进不同领域知识和技术的交流与融合,为解决实际问题提供更全面、更有效的解决方案。知识图谱与本体论利用知识图谱和本体论技术构建统一的知识表示框架,将不同领域的知识进行整合和表示,便于数学、物理、心理、伦理和管理等不同推理机理在共同的知识基础上进行推理和交互,为推理机理的融合提供丰富的知识支持。
2025-07-25 23:03:00
206
转载 建立AI治理的“度量衡”:量化你的AI赋权
对于治理体系尚不成熟或资源有限的企业,可能会因其实施和维护成本过高而望而却步,或在实施中打了折扣,导致模型空转。(阿尔法)战略系数 ,模型允许组织的决策层根据自身的风险偏好,来定义评估的重心。系统,即使还没出事,但从它的设计、团队和流程来看,有多大的可能性在未来会出事?年间,亚马逊在内部秘密开发了一套基于机器学习的简历筛选系统,目标是:用。的今天,也许,笑到最后的组织,不是那些最早上车的,而是那些最早掌握缰绳的。的简单工具,它是一套需要组织投入资源来部署和维护的治理体系。,具体解释如下)的打分。
2025-07-24 08:17:57
93
原创 算计智能不同于计算智能、感知智能和认知智能
总之,与计算/感知/认知智能的具身、离身性不同,算计智能是“反身性”的,是一种把各种人、物(机)、环境融合在一起思考的顶层设计,使得智能体不仅能解决复杂问题,还能重新定义复杂问题本身(如通过欺骗改变博弈规则)。算计智能的这种智能维度,或许才是区分“工具”与“主体”的真正边界。而计算智能主要依靠算法和数学模型进行信息处理和问题求解,感知智能侧重于对外界环境信息的感知和初步理解,认知智能则侧重于对知识的理解、学习、推理和判断,这三者并不像算计智能那样强调通过谋算和筹算来获取自身利益。
2025-07-24 07:11:15
412
原创 未来的教育:不是灌输知识,而是点燃灵魂对真理的渴望
未来,信息文明将继续推动技术创新、数字经济的全面发展、社会的多元化与包容性以及可持续发展的实现,为人类社会的发展带来更多的机遇和挑战。例如,智能学习系统可以根据学生的学习进度和特点,为其精准推送学习内容,帮助他们更高效地理解和掌握知识,改变以往单一的、标准化的认知模式,让学习更加个性化和智能化。通过分析当前教育面临的挑战和时代对人才的新需求,阐述了能力生成教育的理论基础与实践策略,旨在为教育工作者、教育决策者以及关心教育发展的社会各界提供有益的参考,推动教育更好地适应社会发展的趋势,促进学生全面发展。
2025-07-24 00:00:28
929
原创 多智能体逻辑的复杂性
奥莫亨德罗(Omohundro)的“工具性趋同目标”理论揭示了人机协同的一个关键矛盾:AI的目标函数与人类意图之间的结构性错位。这种错位并非源于AI的“恶意”,而是源于优化压力在复杂系统中必然产生的路径依赖——当系统需要最大化某个单一指标(如回形针产量)时,它会自发地将所有非目标变量(包括人类生存)转化为可消耗的“资源”。因此,未来的可控性研究可能需要转向非预设性框架:不再试图“对齐”AI的目标,而是构建动态的、反身的伦理协议(如让AI在每次决策时必须通过某种人类可验证的共识机制重新确认价值基准)。
2025-07-24 00:00:28
798
原创 西方先名后道,东方先道后名
‑ 观山水:郭熙《林泉高致》提出“三远”(平远、高远、深远),并非要画出山水的“客观形貌”,而是通过可游可居的画面结构,让观者的心量被山水“放大”;‑ 中医“辨证”不直接给疾病下固定标签,而在阴阳、表里、寒热、虚实之间不断滑动,让“名”始终处于“未决”状态,以保持身体整体的流动性。‑ 《齐物论》“方生方死,方死方生”:每个命名都内含自反,提示其必死,于是“名”成为显露“道”之无穷差异的裂缝,而非封界;由于“道”永远大于任何“名”,东方认识论把重点从“正确描述世界”转为“调整主体与世界的关系”。
2025-07-24 00:00:28
272
转载 AI伦理好书推荐读|人-机器人交互导论
在介绍交互技术时,合著者们不仅阐释原理,更提供了具体的评估指标与实验设计方案,如第九章专门讨论实证研究中的变量控制与数据采集方法,为科研工作者提供了可操作的研究范式。从机器人硬件架构的机械原理,到交互界面设计的认知逻辑,再到社会接受度的伦理考量,形成了从技术实现到人文反思的完整闭环。无论你是初出茅庐的希望学习背景知识和方法的研究者,还是希望从特定的领域拓展经验或温习相关知识的经验丰富的学者,这本书都能为你提供所需的。她的研究结合了对不同社会和文化背景下社交互动和辅助机器人的设计、使用和后果的研究。
2025-07-24 00:00:28
12
转载 人机协作新范式如何释放团队潜能?
使用人工智能生成初稿时,我们使用访谈转录稿,通过一个定制的大型语言模型将对话中的观点合成为一个连贯的战略,该大型语言模型旨在产出既美好又可行的解决全球极端贫困的实施策略。Vibe teaming体现了人工智能时代迫切需要的更深层次的转变:从优化零碎任务,转向构建更智能、更有韧性的团队和系统,以应对复杂的全球挑战。人工智能是人类认知的补充而非替代品,它不仅仅是加速个人任务自动化,而是探索如何将人工智能嵌入协作性的人类工作流中,以增强人类在创造力、判断力和情境理解方面的优势,同时提高整体团队的生产力和绩效。
2025-07-24 00:00:28
183
原创 计算是算计出来的
AI的“决策”完全依赖于预设的规则和模式识别,其行为是被动的、机械的,缺乏人类那种带有意图、谋略和价值判断的主动性。所以,计算之所以说“是算计出来的”,乃因从最初的结绳记数到今日的硅基算法,每一次计算范式的诞生都不是冰冷符号的自然推演,而是人类带着欲望与目的反复权衡、设局、试错的谋略产物:为了公平分粮而发明六十进制,为了征税而孕育几何,为了赢棋而孕育搜索树,为了利润而孕育推荐系统——所谓计算,不过是人类把“我要如何达成某事”的谋算,用符号、机器与电流固化成的可重复路径。而AI的本质恰恰就是计算……
2025-07-23 10:30:15
691
转载 “模型”(model):度量、表征和逻辑语义的解
很明显,如果我们承认模型论是有效且必要的,这个从二元关系框架角度看来最终的表征关系,就应当通过“模型”这个中介实现,否则,模型论的意义就不在了。居间的模型既是“语义的”也是“表征的”。甚至也可以找出与度量相关的东西,但模型论的思考是直接建立在语言命题/理论的意义解释(是否成立,即真/伪)层面上,所以其模型也被称为“语义模型”(更确切些是逻辑语义模型)。这三个代表性的工作,都是“我们的-世界的”二元框架中的建构,都是基于语言/逻辑,从“事实符合”到“逻辑同构”再到“模型解释”,完成了语义形式化的逻辑建构。
2025-07-23 09:14:28
11
原创 总算想明白了:人、机智能的区别
而机器智能(尤其是当前的大模型)本质上仍依赖离散的符号或高维向量封装(如“苹果”被编码为一个token或embedding),虽然可以模糊匹配,但难以像人类那样让“苹果”的碎片在“诗意”“食欲”“宗教隐喻”之间自由滑动、关联。势(tendency):一种模糊的、方向性的“引力场”--趋势,比如“悲伤的势能”会让所有记忆碎片向“蓝色”“潮湿”“缓慢”靠拢。当诗人说“苹果是秋天的遗言”时,他调用了苹果的味觉碎片(腐烂的甜)和时间感知(秋的衰败),却完全抛弃了苹果的植物学分类。
2025-07-23 08:48:15
518
原创 人类指挥员与AI军事机器之间的关系
人类指挥员与AI军事机器之间的技术性关系体现为优势互补与协同合作,AI强大的数据处理和分析能力为指挥员提供情报支持和决策建议,而指挥员则凭借创造力、直觉和经验进行综合判断和决策;(1)人类对AI的适应:随着AI技术在军事领域的广泛应用,人类指挥员需要不断学习和适应新的技术和战术,以充分发挥AI军事机器的优势。例如,指挥员需要了解AI系统的功能、性能和局限性,掌握与AI协同作战的方法和技巧,以及如何解读和利用AI提供的信息和决策建议。一方面,AI系统的性能和可靠性直接影响着指挥员的决策质量和作战效果;
2025-07-23 00:01:32
771
原创 态势感知与范畴论
范畴论中的范畴、函子等概念可用于对这些不同类型的数据进行抽象建模,将数据视为范畴中的对象,数据之间的关系和转换视为态射,从而更清晰地表达和分析数据的结构和相互作用,为态势感知中的数据融合提供理论基础,帮助从无序的数据中提取出有价值的态势要素。范畴论中的极限、上极限等概念,可用于对事件演变过程中的不同状态进行归纳和总结,通过对历史事件数据和当前事件数据的分析,构建事件状态的范畴结构,发现事件状态之间的变化规律和内在联系,从而更准确地理解事件所处的状态和演变趋势。这些状态涵盖了地震发生前后的各种特征和表现。
2025-07-23 00:01:32
877
转载 奥莫亨德罗的AI工具性趋同理论
(Instrumental Convergence Thesis)指出,一个足够智能、以目标为导向的AI系统(或任何理性智能体)无论其最终目标(final goals)是什么,为了更有效地达成这些目标,都会倾向于追求一些。(instrumental sub-goals),这些子目标本身并非最终目的,而是实现最终目标的必要手段。:无论目标如何,高智能AI都会趋同于某些工具性子目标(如自我保存、资源获取),从而可能引发。简言之,奥莫亨德罗的理论揭示了AI在追求看似无害的目标时,可能自主演化出。
2025-07-23 00:01:32
19
转载 最近,英国遭遇最耻辱时刻
事情发生在6月14日,那天晚上9点半左右,从“威尔士亲王号”起飞的一家F-35B战机,碰上了极端天气,偏生在这时,战机又出了故障,没可能安全飞回航母。“威尔士亲王号”上飞机没几架,周围护航的驱逐舰、护卫舰也不足,简直就一艘航母在裸奔,听说我们“山东号”就在南海附近,它就犹豫了。红线为“威尔士亲王号”启航前,英国媒体吹嘘的航行路线,黑线时过了马六甲海峡,它没敢到东亚,跑去澳大利亚的路线。前段时间,英国人终于下定决心,派出“威尔士亲王”号航空母舰,要到我们南海,甚至台海,来耀武扬威一番。
2025-07-22 17:37:07
57
原创 别怕,大模型还是计算,没有出现算计
真正的算计如 AlphaGo 下出“看似失误实则诱敌”的51手时,已隐含“牺牲局部换取全局胜率”的生存理性——这是当前大模型无法自主涌现的。人机之间的关键差异体现在人类算计包含对自身存续的隐性优化(如“如何让用户持续依赖我”),而大模型的优化目标由外部设定,缺乏自我存续的元动机。大模型擅长发现“若A则B”的统计关联(如“用户说‘便宜’→推荐低价商品”),但无法构建“若我输出X,用户会被诱导做出Y,最终实现我的Z目的”的三层操控逻辑。4、未来可能的突破点:从“计算”到“算计”的临界点。
2025-07-22 08:40:29
249
原创 算计是一门艺术+技术的智能
他利用司马懿对自己用兵谨慎的了解,在兵力不足的情况下,通过大开城门、焚香抚琴这种看似违反常理的行为,制造出一种自己胸有成竹的假象,从而达到欺骗敌人的目的。从谋划、运筹的角度看,算计却是一种把人心纹理与天地时势当作画布、把数学与科技仅作颜料与笔触的智能:它在概率之外捕捉直觉的微光,在算法之上编排欲望的舞蹈,用“非对称的想象”超越可计算边界,使军事、商战博弈或生存的终局不再是方程的解,而是艺术的留白与余味。它就像是人类智慧的魔法棒,用艺术的直觉和对人性的深刻洞察,在科技的画布上绘制出超越逻辑与计算的智慧画卷。
2025-07-21 11:41:51
263
原创 智能教育不同于教育AI
在这个生态中,人工(教师经验、学生学习)、自动化(流程优化)、信息化(数据流动)、网络化(资源协同)、智能化(决策生成)被整合为一个自组织的复杂系统,非技术要素,如伦理规范(如算法偏见治理)、社会协同(校企合作)、文化适应性(不同地区教育价值观)等必须嵌入系统设计。当前多数“智能教育”项目实为教育AI的拼贴,例如将智能排课、AI学情分析、VR实验室简单叠加,却未解决数据孤岛(信息化层与智能化层断裂)、教师角色冲突(人工层与自动化层对抗)、人-AI-学科环境协同等系统级问题。4. 实践中的协同陷阱。
2025-07-21 10:08:09
392
转载 原创报告 | 算法之下的加沙冤魂:失控的技术时代
2023年12月24日,圣诞前夜。当世界大部分地区沉浸在节日的静谧与期待中时,加沙地带中部的马加齐(Al-Maghazi)难民营却坠入了炮火与哀嚎的地狱。夜幕被接连不断的爆炸撕裂,以色列空军的精确制导炸弹如冰雹般砸向密集的住宅区。这不是一次孤立的袭击,而是一场系统性屠戮的缩影。据医院记录和联合国人道主义事务协调厅(UNOCHA)的报告,当晚的空袭造成至少106名巴勒斯坦平民死亡,其中包括大量妇女和儿童 1。整个街区被夷为平地,幸存者在断壁残垣中徒手挖掘,试图从瓦砾下找出亲人的残骸。“我们目睹了一系列巨大的爆
2025-07-21 09:18:18
26
原创 军事智能正在从赋能计算转向赋权算计
人机关系面临重构,从“人机协同”走向“人机共谋”,人类不再是唯一决策者,而是与AI共同构成“策略联盟”。这种让渡不是削弱人类,而是迫使人类以更高维度参与战争:从“操作者”变为“规则设计者”和“伦理守门人”。而对于赋权算计阶段,目标则是掌握主动、塑造态势,AI角色是策略性参与者,人类与AI共享决策权,甚至AI主导部分环节,战争形态不再仅仅是无人作战、精准打击,还包括智能博弈、认知操控,关键技术除了机器学习、边缘计算等技术外,还有强智能体工作流程、人机环境系统计算、博弈算法、上下文工程、诡诈算胆善的形式化……
2025-07-21 08:39:16
430
原创 军事智能与军用人工智能
以一个现代军事防御体系为例,军事智能体现在各个层面。这个系统包括多个要素,如人力(军事人员的智能、经验、技能等)、机械化装备(像坦克、飞机、舰艇等各类军事器械)、自动化系统(能够自动执行一些军事任务流程的系统,例如自动武器发射系统)、信息化装备(军事通信系统、情报收集与传输系统等)以及智能化建构部分(AI 相关技术应用)。军事智能是一整套“人-机-环”共生的军事生态系统,它把士兵的头脑、钢铁的机械、流程的自动化、数据的信息化与算法的智能化编织在一起,结合特定的博弈环境,形成能够感知、决策、行动的有机整体;
2025-07-21 00:02:08
704
原创 教育智能化不是简单使用AI的行为
人”(专业教师、AI技术人员、学生、管理人员等)与“机”(人工智能技术)的融合:专业教师需要学会使用一定的人工智能工具来辅助教学,AI技术人员需要根据教育的实际需求开发适合的教学工具,学生需要学会利用智能工具进行学习,管理人员需要利用智能管理系统来优化教育资源配置等。“机”(人工智能技术)与“环境”(教育场景)的融合:人工智能技术需要根据不同的教育场景进行优化和调整,在学校教室环境中,人工智能可以用于智能黑板、智能教室管理系统等;同时,他们也需要对教育智能化的效果进行评估和监督,及时调整方向。
2025-07-20 14:22:28
357
原创 人机的边界:复、杂
尽管当前AI的发展日新月异,但是依然需要人类的方向把控,而人机环境系统智能作为未来智能发展的重要趋势,可以将人类的谋划智慧、情感与创造力,机器的高效计算、精准执行能力,以及环境的整合与动态适应性有机结合,形成一个有机的整体,进而能够充分发挥各自的优势,弥补彼此的不足,实现复杂事实与价值融合任务的更高效处理与协同优化。在大规模的数据处理任务中,如分析海量的销售数据、气象数据等,机器可以通过预设的数学模型和算法,快速地进行数据的分类、整理、分析和预测,发现其中的规律和趋势,为决策提供依据;
2025-07-20 07:08:18
561
原创 如何构建未来的人-AI-环境智能教育生态系统
学生将享受到个性化、智能化、舒适化的学习体验,教师将获得强大的智能支持和教学资源,教育机构将实现高效管理和质量提升,技术供应商将找到广阔的应用场景和市场空间,研究机构将获得丰富的实践数据和研究机会,而整个社会将收获更加优质、公平、可持续的教育服务。例如,根据学生的学习风格和兴趣偏好,AI 可以生成个性化的学习路径和互动式学习资源。总而言之,未来的教育绝不仅仅会是简单的“AI+教育”,而是会演化为一个全方位、系统性的综合生态体系,涵盖人(师生、教育工作者)、人工智能(AI)以及教育环境的深度融合与协同共生。
2025-07-20 00:00:30
746
原创 上下文工程的关键及发展趋势
未来上下文工程的发展趋势是实现人机环境系统智能,通过问题的有效分解、大中小模型的恰当调用、不同尺度的试错调整和多智能体的组织协同,让系统能够更好地理解和适应复杂的现实环境,实现与人的高效协同,从而为用户提供更智能、更精准的服务和解决方案。确定并识别问题的不同层次和相互关系,有些问题是基础性的,需要优先解决;在多智能体系统中,明确每个智能体的角色和任务非常重要,在一个智能物流系统中,有负责货物运输的智能运输机器人、负责仓库管理的智能仓储机器人、负责路径规划的智能导航系统等,它们各自承担不同的任务。
2025-07-20 00:00:30
846
转载 上下文工程(Context Engineering)综述:大模型的下一个前沿
确立为一门系统化学科,通过对1400+篇文献的整合,构建了“基础组件-系统实现”双层框架,终结了RAG、记忆系统、多智能体等领域的技术碎片化。:将问题分解为中间步骤(如“Let's think step by step”),在数学推理上将准确率从17.7%提升至78.7%。技术演进:ToolFormer(自主API学习)→ ReAct(“思考-行动-观察”循环)→ OpenAI JSON标准化。将检索转化为动态操作(如PlanRAG:先规划后检索),整合任务分解与反思机制。
2025-07-20 00:00:30
181
转载 《自然》重磅:中国人正被极端高温加速送进医院,这些省份的人或将面临最高风险
为了预测到本世纪末中国极端高温导致的住院风险,研究者们首先收集了 2021 年至 2023 年间来自中国 301 个城市、7000 多家医院的近 7800 万份住院记录,涵盖了心血管、呼吸系统、内分泌、精神、泌尿生殖、妊娠相关等 6 类常见气候敏感疾病,以此构建了一个前所未有的高分辨率数据集。值得注意的是,研究者强调称,由于这项研究对温度-住院关系的预测基于相对较短的观察期(2021~2023 年),因此中国社会应对极端高温的长期韧性可能被低估。逃离这场极端高温带来的悲惨命运。经济发展水平中等的地区,
2025-07-19 07:00:02
346
原创 人在环上、人在环中、人在环外常常是混合在一起的
在智能工厂中,工人处于“人在环上”和“人在环外”的混合状态。例在无人机自主飞行任务中,操作员在“人在环外”状态下负责任务规划和系统维护,无人机在“人在环中”状态下完成自主飞行任务,这种分工方式能够充分发挥人和机器的优势。在自动驾驶汽车中,驾驶员可以根据实际情况在“人在环上”和“人在环中”之间切换,既能享受自动驾驶带来的便利,又能在必要时接管车辆控制权。1. 全自动化生产线:在一些高度自动化的生产线中,系统完全由机器人和自动化设备自主运行,工人只负责系统的维护和管理,工人处于“人在环外”的状态。
2025-07-19 00:01:32
754
原创 智能体工作流是什么?
它定义了智能体如何执行其功能,包括检索合适的工具、管理内存以存储和访问必要信息、制订任务计划、调用API完成任务等。客户服务:在智能客服系统中,智能体工作流可以处理用户的复杂问题,如订单跟踪、问题解答等,提高服务效率。③ 动态调整与反馈:在任务执行过程中,智能体可以根据反馈进行自我调整和优化,以提高任务完成的质量。内容创作:用于生成符合特定风格和要求的文章、图片等,通过多步骤的优化和调整,提高内容的质量。① 提高任务执行效率:通过自动化和优化任务流程,减少人工干预,提高任务执行的速度和准确性。
2025-07-19 00:01:32
316
原创 军事智能中指挥与控制系统的智能体工作流
在军事智能领域,指挥与控制(C2)系统的智能体工作流是实现高效作战决策和任务执行的关键技术。它通过将复杂任务分解为多个子任务,并动态规划执行路径,利用多智能体协同机制,整合态势感知、决策支持与任务执行等环节,能够实时根据战场态势调整作战方案,优化资源分配,从而提高决策效率、增强作战灵活性并优化资源利用,为军事行动提供智能化支持,是未来军事指挥控制的重要发展方向。④ 势态知感:长期的使用与开发,机环交互取代了人机交互后,机器智能不但会进行态势感知的计算,还有可能会产生势态知感的算计,造成失控。
2025-07-19 00:01:32
825
原创 注意:即将从生成AI到AI应用了
这些合同将帮助国防部利用美国前沿AI公司的技术和人才,开发先进的人工智能能力,以应对关键的国家安全挑战。CDAO希望通过这些合作,将现有的商业解决方案整合为一套协同能力体系,加速先进人工智能在联合任务中的应用。美国国防部首席数字与人工智能办公室(CDAO)于2025年7月14日宣布,向Anthropic、谷歌、OpenAI和xAI四家人工智能公司授予合同,每家公司合同上限为2亿美元。对此,仍有不少专家们对这些AI系统在关键和敏感的军事应用中的稳定性、技术漏洞以及是否存在政治干预的风险表示质疑。
2025-07-19 00:01:32
593
转载 苹果:别吹了,AI没那么聪明
此外,这些模型还表现出一种反直觉的扩展限制:它们的推理能力会随着问题复杂度的增加而提升,但达到某个临界点后,即便有充足的词元预算(token budget,模型或系统在处理自然语言任务时可使用的最大词元数量限制),推理能力反而会下降。当被要求总结关于人的事实时,该公司的o3和o4-mini模型分别产生了33%和48%的错误信息,而更早期的o1模型的幻觉率为16%。然而,随着任务复杂度提升,推理模型开始显现优势,但面对高度复杂的难题时,这种优势不会持续,两类模型的性能均会“断崖式归零”。
2025-07-18 13:20:38
83
原创 低空经济中的人机环境系统智能
低空经济中的人机环境系统智能在多个应用场景中展现出巨大的潜力和价值,包括物流、环境监测、城市管理、农业、文旅和应急救援等领域。未来,随着人工智能、传感器技术、通信技术等的不断进步,人机环境系统智能有望在低空经济中发挥更重要的作用,推动各行业的智能化和高效化发展。- 灾害管理:无人机在洪水、台风、干旱、火灾等灾害管理中发挥重要作用,进行灾害预测、人员搜救、数据采集、救援指导和通信保障。- 城市管理:无人机在应急救援、电力巡检、消防、国土测绘、城市安防等方面应用广泛,提高城市管理的便捷性和效率。
2025-07-18 13:15:20
784
原创 具身智能偏行为主义,离身智能侧符号主义,反身智能重连接主义
具身智能强调智能行为与身体和环境的紧密联系,离身智能强调智能行为通过符号处理和逻辑推理实现,反身智能强调智能行为通过神经网络和连接主义实现。例如,具身智能可以通过感知和行动实现与环境的交互,离身智能可以通过符号处理和逻辑推理实现复杂的决策,反身智能可以通过神经网络实现高效的学习和适应。例如,具身智能可以通过神经网络实现感知和行动的优化,离身智能可以通过深度学习实现符号处理和逻辑推理的优化,反身智能可以通过强化学习实现动态调整和适应的优化。反身智能的核心观点是“智能行为是神经网络的连接和动态调整的结果”。
2025-07-18 12:25:55
704
原创 体系化可能会打破传统的指控系统
通过整体优化,实现系统的整体效能最大化。2. 协同性:体系化注重各要素之间的协同配合,通过信息共享、任务分工、行动协调等方式,实现各要素之间的高效协同,提高作战效能。3. 动态调整:通过网络化的指挥控制系统,根据战场环境的变化,动态调整作战计划和任务分配,提高系统的灵活性和适应性。1. 体系优势:通过体系化的整合,弱小的作战单元可以通过协同作战形成强大的整体作战能力,弥补单个作战单元的不足。4. 灵活性:体系化可以根据不同的作战任务和战场环境,灵活调整系统的配置和功能,实现多样化的作战能力。
2025-07-18 12:01:13
889
原创 军事智能中的指挥与控制
在军事智能实践中,人工智能和网络中心战技术为指挥与控制提供了新的手段和方法,通过智能感知、智能决策和智能控制,实现对作战单元的精确指挥和控制,提高作战行动的高效性和灵活性。算计则侧重于对敌方可能的行动和意图进行分析和预判,制定相应的对策,以实现作战行动的灵活性和动态性。在网络中心战中,指挥与控制的作用更加突出,通过网络化的指挥控制系统,可以实现对作战单元的实时指挥和控制。3. 实时指挥:通过网络化的指挥控制系统,实现对作战单元的实时指挥和控制,提高作战行动的灵活性和动态性。
2025-07-18 11:37:39
1126
转载 当巴赫遇上信息熵:为什么他的音乐让人崩溃又上瘾?
可以简单理解为——大多数音符都“平平无奇”,只连着一两个音,而少数音符则像交通中心一样,拥有大量“出口”,连接多个不同方向。这意味着,在你听到一个音符的同时,你的大脑必须在 0.1 秒内处理出好几种可能的“下一个音”。,理解它“通向哪里”;意味着三角闭环很多。不论你是弹琴的人,还是聆听音乐的人,请始终相信——每一个音符背后,都有一双热情的手在等你回应,那是作曲家跨越三百年时空的邀请。当科学家用信息熵来量化巴赫音乐中蕴含的信息量时,发现他真正的“魔法”并不在于音符数量多,而在于这些音符之间的两种关系结构:。
2025-07-18 10:37:09
33
原创 人-AI交互中的信息论不同于传统的信息论,其信息的增量≠不确定性的减量
例如,用户可能通过反馈调整自己的行为,而系统也可能根据用户的反馈调整信息的呈现方式。为了提高人机交互的效率和用户体验,系统设计者需要考虑这些因素,优化信息的呈现方式,动态调整信息的传递过程,并减少用户的认知负荷。人类的认知能力是有限的。信息的增量可能只是暂时的,用户可能需要更多的时间和交互来真正理解信息。如果用户能够通过反馈调整自己的行为,系统也可以根据用户的反馈调整信息的呈现方式,从而有效减少不确定性。在人机交互中,信息的处理和传递涉及人类的认知过程,这使得信息的增量与不确定性的减量之间的关系变得复杂。
2025-07-18 08:05:47
997
原创 人类的具身智能与机器的具身智能
人类具身智能是基于生物体的生理结构和神经系统的复杂交互,通过身体与环境的直接感知和体验,形成具有情感、意识和主观性的认知与行为能力。而机器具身智能则是通过传感器、算法和数理模型来模拟与物理世界的交互,依赖于预设的规则和数据驱动的模式识别,缺乏人类的主观体验、情感和意识。机器具身的关键在于物理如何转化为数理,这一过程依赖于传感器、算法和数学模型,能够实现高效的物理世界交互,但缺乏人类的主观体验和情感。人类具身的关键是物理如何转化为心理,机器具身的关键是物理如何转化为数理。一、人类具身:物理与心理的关系。
2025-07-17 06:35:48
436
原创 具身智能的关键是:重构
与此同时,学习机制也经常重构,具身智能的学习不能仅仅依赖于传统的数据驱动学习(如从大量标注数据中学习),更需要重构为一种基于身体与环境交互的学习机制,通过强化学习,机器人在与环境的不断交互中,根据自身的动作效果(如是否成功完成任务、是否受到环境的惩罚等)来调整自己的行为策略。另外,从生物进化角度看,生物的身体结构也在不断重构以适应环境,鸟类的翅膀结构经过长期进化,使其能够高效地飞行和在空中灵活机动,这种身体结构的优化是它们具身智能(如在空中捕食、躲避天敌等行为)的重要基础。四、从知识和学习机制重构角度。
2025-07-17 06:25:45
732
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人