题解:
判断凸包相交的时候本来想算交面积的,然后想了想这样是不行的,因为交面积=0有可能是凸包顶点相交。然后题目数据量只有100个点而且还得分成两个集合,所以直接跑一下n^2的暴力就可以了
#include <bits/stdc++.h>
using namespace std;
#define maxn int(1e2+5)
const long long INF=1e18;
const double eps = 1e-6;
const double pi = acos (-1.0);
typedef long long int ll;
int dcmp(double x){
if(fabs(x)<eps)return 0;
else if(x>0)return 1;
else return -1;
}
double sqr(double x){return x*x;}
struct Point {
double x, y;
Point (double _x = 0, double _y = 0):x(_x), y(_y) {}
void input () {scanf ("%lf%lf", &x, &y);}
void output () {printf ("%.2f %.2f\n", x, y);}
friend istream &operator >>(istream &os,Point &b){
os>>b.x>>b.y;
return os;
}
friend ostream &operator <<(ostream &os,Point &b){
os<<b.x<<' '<<b.y;
return os;
}
bool operator == (const Point &b) const {
return (dcmp (x-b.x) == 0 && dcmp (y-b.y) == 0);
}
bool operator !=(const Point &b)const{
return !((dcmp(x-b.x)==0&&dcmp(y-b.y)==0));
}
bool operator < (const Point &b) const {
return (dcmp (x-b.x) == 0 ? dcmp (y-b.y) < 0 : x < b.x);
}
double operator ^(const Point &b)const{ //叉积
return x*b.y-y*b.x;
}
Point operator + (const Point &b) const {
return Point (x+b.x, y+b.y);
}
Point operator - (const Point &b) const {
return Point (x-b.x, y-b.y);
}
Point operator * (double a) {
return Point (x*a, y*a);
}
Point operator / (double a) {
return Point (x/a, y/a);
}
double len2 () {//返回长度的平方
return sqr (x) + sqr (y);
}
double len () {//返回长度
return sqrt (len2 ());
}
double polar(){ //向量的极角
return atan2(y,x); //返回与x轴正向夹角(-pi~pi]
}
Point change_len (double r) {//转化为长度为r的向量
double l = len ();
if (dcmp (l) == 0) return *this;//零向量返回自身
r /= l;
return Point (x*r, y*r);
}
Point rotate_left () {//顺时针旋转90度
return Point (-y, x);
}
Point rotate_right () {//逆时针旋转90度
return Point (y, -x);
}
Point rotate (Point p, double ang) {//绕点p逆时针旋转ang
Point v = (*this)-p;
double c = cos (ang), s = sin (ang);
return Point (p.x + v.x*c - v.y*s, p.y + v.x*s + v.y*c);
}
Point normal () {//单位法向量
double l = len ();
return Point (-y/l, x/l);
}
};
double cross (Point a, Point b) {//叉积
return a.x*b.y-a.y*b.x;
}
double dis (Point a, Point b) {//两个点的距离
Point p = b-a; return p.len ();
}
int convex_hull (Point *p, Point *ch, int n) {//求凸包//更新:按照逆时针输出
//所有的点集 凸包点集 点集的点数
sort (p, p+n);
int m = 0;
for (int i = 0; i < n; i++) {
while (m > 1 && cross (ch[m-1]-ch[m-2], p[i]-ch[m-1]) <= 0)
m--;
ch[m++] = p[i];
}
int k = m;
for (int i = n-2; i >= 0; i--) {
while (m > k && cross (ch[m-1]-ch[m-2], p[i]-ch[m-1]) <= 0)
m--;
ch[m++] = p[i];
}
if (n > 1)
m--;
return m;
}
double dot (Point a, Point b) {//点积
return a.x*b.x + a.y*b.y;
}
struct Line {
Point s, e;//直线的两个点
Line () {}
Line (Point _s, Point _e) : s(_s), e(_e) {}
//一个点和倾斜角确定直线
Line (Point p, double ang) {
s = p;
if (dcmp (ang-pi/2) == 0) {
e = s + Point (0, 1);
}
else
e = s + Point (1, tan (ang));
}
//ax+by+c=0确定直线
Line (double a, double b, double c) {
if (dcmp (a) == 0) {
s = Point (0, -c/b);
e = Point (1, -c/b);
}
else if (dcmp (b) == 0) {
s = Point (-c/a, 0);
e = Point (-c/a, 1);
}
else {
s = Point (0, -c/b);
e = Point (1, (-c-a)/b);
}
}
void input () {
s.input ();
e.input ();
}
void adjust () {
if (e < s) swap (e, s);
}
double polar(){ //极角
return atan2(e.y-s.y,e.x-s.x); //返回与x轴正向夹角(-pi~pi]
}
double length () {//求线段长度
return dis (s, e);
}
double angle () {//直线的倾斜角
double k = atan2 (e.y-s.y, e.x-s.x);
if (dcmp (k) < 0) k += pi;
if (dcmp (k-pi) == 0) k -= pi;
return k;
}
Point operator &(const Line &b)const{ //求两直线交点
Point res=s;
double t=((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e));
res.x+=(e.x-s.x)*t;
res.y+=(e.y-s.y)*t;
return res;
}
};
double convex_circumference (Point *p, int n) {//多边形的周长(凹凸都可以)
double ans = 0;
for (int i = 0; i < n; i++) {
ans += dis (p[i], p[(i+1)%n]);
}
return ans;
}
bool point_on_seg (Point p, Line l) {//判断点在线段上
return dcmp (cross (p-l.s, l.e-l.s)) == 0 &&
dcmp (dot (p-l.s, p-l.e) <= 0);
//如果忽略端点交点改成小于号就好了
}
int relation (Point a, Point *b, int n) {//点和多边形的关系(凸凹都可以)
//0:外部 1:内部 2:边上 3:顶点
int w = 0;
for (int i = 0; i < n; i++) {
if (a == b[i] || a == b[(i+1)%n])
return 3;
if (point_on_seg (a, Line (b[(i+1)%n], b[i])))
return 2;
int k = dcmp (cross (b[(i+1)%n]-b[i], a-b[i]));
int d1 = dcmp (b[i].y - a.y);
int d2 = dcmp (b[(i+1)%n].y - a.y);
if (k > 0 && d1 <= 0 && d2 > 0)
w++;
if (k < 0 && d2 <= 0 && d1 > 0)
w--;
}
if (w != 0)
return 1;
return 0;
}
Point p1[maxn],p2[maxn],t1[maxn],t2[maxn];
int c1=0,c2=0;
int main()
{
int t;
scanf("%d",&t);
while(t--){
int n;
c1=0,c2=0;
scanf("%d",&n);
for(int i=0;i<n;i++){
double xi1,xi2;int yi;
scanf("%lf%lf%d",&xi1,&xi2,&yi);
if(yi==-1)p1[c1++]=Point(xi1,xi2);
else p2[c2++]=Point(xi1,xi2);
}
c1=convex_hull(p1,t1,c1),c2=convex_hull(p2,t2,c2);
int flag=1;
for(int i=0;i<c1;i++){
if(relation(t1[i],t2,c2)>=1)flag=0;
}
for(int i=0;i<c2;i++){
if(relation(t2[i],t1,c1)>=1)flag=0;
}
if(flag)printf("Successful!\n");
else printf("Infinite loop!\n");
}
}