【C】盛最多水的容器(双指针)

盛最多水的容器

原题目链接:点击跳转

给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) (i, height[i])

找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

返回容器可以储存的最大水量。

说明:你不能倾斜容器。
提示:

  • n == height.length
  • 2 <= n <= 105
  • 0 <= height[i] <= 104

题解

设两指针 i , j ,指向的水槽板高度分别为 h[i] , h[j],此状态下水槽面积为 S(i,j) 。由于可容纳水的高度由两板中的 短板 决定,因此可得如下 面积公式 :
S ( i , j ) = m i n ( h [ i ] , h [ j ] ) × ( j − i ) S(i,j)=min(h[i],h[j])×(j−i) S(i,j)=min(h[i],h[j])×(ji)
在这里插入图片描述
在每个状态下,无论长板或短板向中间移动一次,都会导致面积 底边宽度 −1​ 变短:

  • 如果向内 移动短板 ,水槽的短板 min(h[i],h[j]) 可能变大,下个水槽的面积 可能会增大 。
  • 如果向内 移动长板 ,水槽的短板 min(h[i],h[j])​ 不变或变小,下个水槽的面积 一定会变小 。
    所以,初始化双指针为左右两端,循环每轮将短板向内移动一次,并更新面积最大值,直到两指针相遇时跳出;即可获得最大面积。

算法流程

  1. 初始化: 双指针 i ,j 分列水槽左右两端;
  2. 循环收窄: 直至双指针相遇时跳出;
    a. 更新面积最大值 res
    b. 选定两板高度中的短板,向中间收窄一格;
  3. 返回值: 返回面积最大值 res 即可;

正确性证明:
若暴力枚举,水槽两板围成面积 S(i,j) 的状态总数为C(n,2)

假设状态 S(i,j) h[i]<h[j] ,在向内移动短板至S(i+1,j),则相当于消去了 S(i,j−1),S(i,j−2),...,S(i,i+1) 状态集合。而所有消去状态的面积一定都小于当前面积(即<S(i,j)),因为这些状态:

  • 短板高度:相比 S(i,j)相同或更短(即 ≤h[i] );
  • 底边宽度:相比 S(i,j) 更短;
    因此,每轮向内移动短板,所有消去的状态都 不会导致面积最大值丢失
    复杂度分析:
    时间复杂度 O(N) : 双指针遍历一次底边宽度 N​​ 。
    空间复杂度 O(1) : 变量 i ,j , res 使用常数额外空间。

代码

#include <stdio.h>  
  
// 自定义max函数  
int max(int a, int b) {  
    return a > b ? a : b;  
}  
  
// 函数的参数是整数数组和数组的长度  
int maxArea(int* height, int heightSize) {  
    int i = 0, j = heightSize - 1, res = 0;  
    while(i < j) {  
        res = (height[i] < height[j]) ?   
               max(res, (j - i) * height[i++]):   
               max(res, (j - i) * height[j--]);   
    }  
    return res;  
}  
  
int main() {  
    // 示例数组  
    int height[] = {1, 8, 6, 2, 5, 4, 8, 3, 7};  
    int heightSize = sizeof(height) / sizeof(height[0]);  
  
    // 调用maxArea函数  
    int result = maxArea(height, heightSize);  
  
    // 输出结果  
    printf("The maximum area is: %d\n", result);  
  
    return 0;  
}
代码思路来源作者:Krahets
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一岁就可帅-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值