对比学习

目录

1.SimCLR

1.1 SimCLR框架主要组成

 1.2 算法流程及pytorch实现

1.3 主要特性/观点

2.MOCO

2.1 MoCo v1

2.2 MoCo v2

2.2.1 pytorch实现 

参考文献


介绍对比学习中最流行的两个模型:SimCLR及MOCO。

1.SimCLR

1.1 SimCLR框架主要组成

                                                                  SimCLR模型框架

从上图可以看出,SimCLR由以下几部分组成:

  • 随机数据扩增模块,通过该模块生成positive pair:
  • Base encoder f,文中采用resnet50(在average pooling layer之后作为输出);
  • projection head g       
  • contrastive loss function (NT-Xent loss,the normalized temperature-scaled cross entropy loss))                   

 1.2 算法流程及pytorch实现

算法完整流程如下:

 pytorch实现 (来自https://github.com/leftthomas/SimCLR/blob/master/model.py):

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models.resnet import resnet50


class Model(nn.Module):
    def __init__(self, feature_dim=128):
        super(Model, self).__init__()

        self.f = []
        for name, module in resnet50().named_children():
            if name == 'conv1':
                module = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
            if not isinstance(module, nn.Linear) and not isinstance(module, nn.MaxPool2d):
                self.f.append(module)
        # encoder
        self.f = nn.Sequential(*self.f)
        # projection head
        self.g = nn.Sequential(nn.Linear(2048, 512, bias=False), nn.BatchNorm1d(512),
                               nn.ReLU(inplace=True), nn.Linear(5
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

外卖猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值