- 博客(17)
- 收藏
- 关注
原创 高级信息项目管理师在数字化转型中的角色与挑战
今天来谈一谈“高级信息项目管理师在数字化转型中的角色与挑战”,高级信息系统项目管理师是一项以考代评的职称,在数字化转型发展的新阶段,信息化、智能化、数字化等字眼已是常见的标榜。项目规划与实施:高级信息项目管理师需要具备项目规划与实施的能力,能够根据企业战略目标和业务需求,制定合适的信息化项目方案,并确保项目的顺利实施。项目复杂度高:随着数字化转型的深入,项目规模和复杂度不断增加,高级信息项目管理师需提高项目管理和协调能力,确保项目顺利进行。
2024-05-29 11:20:54 354
原创 爬取57同城租房信息
这篇文章主要展示了Python网络爬虫的实际运用,完成了一个简单的网络爬虫程序,可以将58同城网站的租房信息爬取下来,并进行简单的数据分析和可视化。你可以学会此类数据的简单获取。
2024-05-27 16:52:41 416
原创 基于Python的股票分析与预测
首先,我们将介绍Python在金融分析中的应用,然后使用Python的pandas库来处理和分析股票数据。Python的pandas库提供了一种高效的数据处理方式,可以方便地处理和分析大量的金融数据。通过Python,我们可以方便地进行数据处理、数据可视化和价格预测,从而帮助投资者做出更明智的投资决策。首先,我们需要获取股票数据。例如,我们可以计算股票的收益率、波动率等指标,也可以进行数据的清洗和预处理。Python作为一种强大的编程语言,其在数据处理和机器学习方面的优势使其成为金融分析的重要工具。
2024-05-24 09:17:07 955
原创 软件开发全流程
6. **前端技术**:例如 HTML、CSS、JavaScript、React、Vue.js 等。5. **数据库管理系统**:例如 MySQL、PostgreSQL、MongoDB 等。7. **后端技术**:例如 Node.js、Django、Spring Boot 等。1. **编程语言**:例如 Java、Python、C#、JavaScript 等。2. **敏捷开发**:迭代和增量的开发过程,强调快速响应变化和持续改进。3. **版本控制系统**:例如 Git、SVN 等。
2024-05-22 15:10:39 243
原创 数据分析技术全解
3. **数据探索**:通过可视化工具初步探索数据,了解数据的基本特征。5. **时间序列分析**:分析按时间顺序排列的数据,预测未来趋势。4. **数据处理**:对数据进行转换、归一化、编码等预处理操作。4. **数据多样性**:处理不同格式的数据,如文本、图像、音频。6. **结果解释**:解释分析结果,提取有价值的信息和洞见。4. **文本分析**:分析文本数据,如情感分析、主题建模。2. **数据清洗**:处理缺失值、异常值,确保数据质量。7. **决策支持**:基于分析结果,为业务决策提供支持。
2024-05-21 18:24:24 177
原创 基于文本内容的敏感信息识别
随着互联网时代浪潮席卷而来,自媒体行业发展成为热潮,互联网有着无尽网民驻扎,网络安全管理、舆论控制成为重要风险管控要点,与此同时,敏感信息的识别分析有着重要研究意义,为下一步网络空间提供有力支持。本文从数据识别的初始、数据分析可视化以及模型搭建进行简单介绍。可以实现敏感词条提取与分析。
2024-04-20 13:08:58 472
原创 如何检测设备工作状态?这个问题可以通过机器学习算法来解决。
采集一定数量的设备电流数据,并将其标记为关机、待机和工作状态。然后,可以使用分类算法(如决策树、支持向量机等)来训练模型,以预测设备的状态。最后,可以使用交叉验证等技术来评估模型的准确度,并根据需要进行调整和优化。是采集的设备电流数据,包含三列:时间戳、电流大小和状态(off、standby或working)。模型训练完成后,可以使用。可以将上述代码封装成一个预测设备状态的系统。是设备电流数据的CSV文件路径,是预测结果的CSV文件路径。方法来预测新的设备状态。是训练好的模型的路径,
2024-04-18 22:45:29 411 1
原创 Python开发软件程序可以涵盖各种应用领域
用Python开发软件程序可以涵盖各种应用领域,如Web应用程序、数据分析工具、自动化脚本、桌面应用程序等。
2024-04-17 15:03:04 261
原创 Python开发
我们创建了两个类:Order表示订单对象,包含订单ID、客户名称、订单日期和状态等属性。OrderManager是订单管理类,用来加载订单数据并显示订单列表。我们使用csv模块来读取CSV文件中的订单数据,并将其存储在Order对象列表中。在使用时,你需要将实际的订单数据保存为CSV文件(例如orders.csv),每行表示一个订单,并包含订单ID、客户名称、订单日期和状态等字段。你可以根据实际需求扩展该代码,添加更多的功能或修改数据存储方式。
2023-08-02 10:59:18 168
原创 CNN模糊测试用例评估系统
这个模型包含一个32个过滤器的卷积层,每个过滤器的大小为3x3。卷积层后面跟着一个2x2的最大池化层,用于降低特征图的大小。最后是两个全连接层,其中第一个层包含64个神经元,第二个层包含num_labels个神经元,用于进行分类和预测。可以根据自己的需求修改和扩展这个模型,例如添加更多的卷积层、池化层和全连接层,或者使用其他类型的神经网络,如循环神经网络(RNN)或变换器(Transformer)。它通过卷积层、池化层和全连接层等组件来提取图像特征,并进行分类和预测。替换为您的模型路径,
2023-07-10 23:26:23 192 1
原创 数据挖掘实际应用与发展趋势
数据清洗:对数据进行清洗和预处理,包括缺失值填充、异常值处理、数据转换和规范化等。特征工程:根据问题和数据集,选择合适的特征,并提取、转换和选择特征。建立模型:根据问题和数据集,选择合适的算法,并建立模型。模型训练:使用训练数据集对模型进行训练,并评估模型的性能。模型优化:根据评估结果,对模型进行优化和调整。
2023-04-26 22:23:45 2455
原创 UI设计小案例
例子中,使用CSS样式定义了按钮和文本输入框的外观,并使用HTML标记创建它们。我们还可以使用JavaScript添加事件监听器来处理用户与这些UI元素的交互行为。HTML、CSS和JavaScript。
2023-04-25 13:26:34 235
原创 数据挖掘逻辑
数据挖掘是一种从大量数据中自动或半自动地发现有用信息的过程。它涉及使用统计学、机器学习、人工智能等技术来分析数据集,找到其中隐藏的模式和规律,并据此进行预测和决策支持。数据清洗:对原始数据进行处理,去除不必要的信息、处理缺失值、异常值等。数据集成:将多个数据源整合在一起,以便进行分析。数据转换:对数据进行标准化、归一化、离散化等操作,以便于后续分析。数据挖掘:利用各种算法和技术进行数据分析,发现其中的模式和规律,如聚类、分类、关联规则挖掘、时间序列挖掘等。
2023-04-24 23:48:06 125 1
数据分析决策树模型构建+词云图+基于文本内容的敏感信息识别
2024-04-20
AI相关领域论文+英文中文+论文攻读
2024-04-18
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人