强连通即模板题HDU269


1、连通图
一个图不间断,就是一个连通图。
2、强连通图
图中的任意两点通过直接或者间接的连通,称为强连通图。
3、强连通分支
一个图中强连通集合,称为一个强连通分支。(一个点也是一个强连通分支)
4、解决方法
(1)、建图:前向星正向反向分别建图
(2)、dfs正向遍历,按时间戳存在stack中
(3)、dfs反向遍历,stack出栈。dfs的次数是强连通分量的个数,一个dfs的所有值,是一个强连通分支的所有节点。
双DFS 
#include<stdio.h>
#include<string.h>
#include<stack>
#include<iostream>
#include<algorithm>
using namespace std;
struct node
{
	int next,to;
}room[110000];
struct node1
{
	int next,to;
}room1[110000];
stack<int>s;
int n,m;int cnt;int cur;
int head[11000];
int mark[11000];
int head1[11000];
void init()
{
	memset(head,-1,sizeof(head));
	memset(head1,-1,sizeof(head1));
	memset(mark,0,sizeof(mark));
	cnt=0;cur=0;
}
void add(int a,int b)
{
	room[cnt].to=b;
	room[cnt].next=head[a];
	head[a]=cnt++;
}
void add1(int a,int b)
{
	room1[cur].to=b;
	room1[cur].next=head1[a];
	head1[a]=cur++;
}
void dfs(int x)
{
	mark[x]=1;
	for(int i=head[x];i+1;i=room[i].next)
	{
		if(mark[room[i].to]==0)
		{
			dfs(room[i].to);
		}
	}
	s.push(x);
}
void dfs1(int x)
{
	mark[x]=1;
	for(int i=head1[x];i+1;i=room1[i].next)
	{
		if(mark[room1[i].to]==0)
		{
			dfs1(room1[i].to);
		}
	}
}
int main()
{
	while(scanf("%d%d",&n,&m)!=EOF)
	{
		if(n==0&&m==0) break;
		init();
		int x,y;
		for(int i=0;i<m;i++)
		{
			scanf("%d%d",&x,&y);
			add(x,y);
			add1(y,x);
		}
		for(int i=1;i<=n;i++)
		{
			if(mark[i]==0)
			dfs(i);
		}
		int sum=0;
		memset(mark,0,sizeof(mark));
		while(!s.empty())
		{
			int q=s.top();
			s.pop();
			if(mark[q]==0)
			{
				dfs1(q);
				sum++;
			}
		}
		if(sum==1)
		printf("Yes\n");
		else
		printf("No\n");
	}
	return 0;
}
tarjan算法 
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#define Min(a,b) a<b?a:b
#define maxn 100000+10
#define maxh 10000+10
using namespace std;
typedef struct{
    int to,next;
}node;
node E[maxn];
int head[maxh],stack[maxh],dfn[maxh],low[maxh],cnt,top,index,bcnt;
bool instack[maxh];
void init(){
    memset(head,-1,sizeof(head));
    memset(dfn,0,sizeof(dfn));
    memset(instack,false,sizeof(instack));
    cnt=0;
    top=0;
    index=0;
    bcnt=0;
}
void add(int a,int b){
    E[cnt].to=b,E[cnt].next=head[a],head[a]=cnt++;
}
void tarjan(int i){
    int j;
    dfn[i]=low[i]=++index;
    instack[i]=true;
    stack[top++]=i;
    for(int k=head[i];k+1;k=E[k].next){
        j=E[k].to;
        if(!dfn[j]){
            tarjan(j);
            low[i]=Min(low[i],low[j]);
        }
        if(dfn[j]&&dfn[j]<low[i]){
            low[i]=dfn[j];
        }
    }
    if(dfn[i]==low[i]){
        bcnt++;
        do{
            j=stack[top--];
            instack[j]=false;
        }while(j!=i);
    }
}
int main(){
    int N,M,a,b;
    while(~scanf("%d%d",&N,&M)&&(N+M)){
        init();
        for(int i=0;i<M;i++){
            scanf("%d%d",&a,&b);
            add(a,b);
        }
        for(int i=1;i<=N;i++){
            if(!dfn[i]){
                tarjan(i);
            }
        }
        if(bcnt>1){
            printf("No\n");
        }
        else{
            printf("Yes\n");
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值