1、连通图
一个图不间断,就是一个连通图。
2、强连通图
图中的任意两点通过直接或者间接的连通,称为强连通图。
3、强连通分支
一个图中强连通集合,称为一个强连通分支。(一个点也是一个强连通分支)
4、解决方法
(1)、建图:前向星正向反向分别建图
(2)、dfs正向遍历,按时间戳存在stack中
(3)、dfs反向遍历,stack出栈。dfs的次数是强连通分量的个数,一个dfs的所有值,是一个强连通分支的所有节点。
双DFS
#include<stdio.h>
#include<string.h>
#include<stack>
#include<iostream>
#include<algorithm>
using namespace std;
struct node
{
int next,to;
}room[110000];
struct node1
{
int next,to;
}room1[110000];
stack<int>s;
int n,m;int cnt;int cur;
int head[11000];
int mark[11000];
int head1[11000];
void init()
{
memset(head,-1,sizeof(head));
memset(head1,-1,sizeof(head1));
memset(mark,0,sizeof(mark));
cnt=0;cur=0;
}
void add(int a,int b)
{
room[cnt].to=b;
room[cnt].next=head[a];
head[a]=cnt++;
}
void add1(int a,int b)
{
room1[cur].to=b;
room1[cur].next=head1[a];
head1[a]=cur++;
}
void dfs(int x)
{
mark[x]=1;
for(int i=head[x];i+1;i=room[i].next)
{
if(mark[room[i].to]==0)
{
dfs(room[i].to);
}
}
s.push(x);
}
void dfs1(int x)
{
mark[x]=1;
for(int i=head1[x];i+1;i=room1[i].next)
{
if(mark[room1[i].to]==0)
{
dfs1(room1[i].to);
}
}
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==0&&m==0) break;
init();
int x,y;
for(int i=0;i<m;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
add1(y,x);
}
for(int i=1;i<=n;i++)
{
if(mark[i]==0)
dfs(i);
}
int sum=0;
memset(mark,0,sizeof(mark));
while(!s.empty())
{
int q=s.top();
s.pop();
if(mark[q]==0)
{
dfs1(q);
sum++;
}
}
if(sum==1)
printf("Yes\n");
else
printf("No\n");
}
return 0;
}
tarjan算法
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#define Min(a,b) a<b?a:b
#define maxn 100000+10
#define maxh 10000+10
using namespace std;
typedef struct{
int to,next;
}node;
node E[maxn];
int head[maxh],stack[maxh],dfn[maxh],low[maxh],cnt,top,index,bcnt;
bool instack[maxh];
void init(){
memset(head,-1,sizeof(head));
memset(dfn,0,sizeof(dfn));
memset(instack,false,sizeof(instack));
cnt=0;
top=0;
index=0;
bcnt=0;
}
void add(int a,int b){
E[cnt].to=b,E[cnt].next=head[a],head[a]=cnt++;
}
void tarjan(int i){
int j;
dfn[i]=low[i]=++index;
instack[i]=true;
stack[top++]=i;
for(int k=head[i];k+1;k=E[k].next){
j=E[k].to;
if(!dfn[j]){
tarjan(j);
low[i]=Min(low[i],low[j]);
}
if(dfn[j]&&dfn[j]<low[i]){
low[i]=dfn[j];
}
}
if(dfn[i]==low[i]){
bcnt++;
do{
j=stack[top--];
instack[j]=false;
}while(j!=i);
}
}
int main(){
int N,M,a,b;
while(~scanf("%d%d",&N,&M)&&(N+M)){
init();
for(int i=0;i<M;i++){
scanf("%d%d",&a,&b);
add(a,b);
}
for(int i=1;i<=N;i++){
if(!dfn[i]){
tarjan(i);
}
}
if(bcnt>1){
printf("No\n");
}
else{
printf("Yes\n");
}
}
return 0;
}