题目
分析
首先任意三个集合的交为空集,因此一个元素最多出现在两个集合中.
其次每个集合最多被选一次,因为同一个集合被选两次,就等同于不选这个集合.
下面我们考虑一个元素被两个集合包含的情况.(只被一个集合包含的情况比较简单)
我们把每个集合看做为一个节点,用染色法来表示是否选择(比如黑色表示选,白色表示不选).
设这个元素为 x x x,包含 x x x的两个集合为 s 1 , s 2 s_1,s_2 s1,s2
如果第 x x x位的灯泡为 打开,那么我要么不选,要么就把 s 1 s_1 s1和 s 2 s_2 s2都选.
即: s 1 , s 2 s_1,s_2 s1,s2 为同一种颜色.
如果第 x x x位的灯泡为 关闭,那么我必须在 s 1 s1 s1和 s 2 s_2 s2中选一个.
即: s 1 , s 2 s_1,s_2 s1,s2为不同的颜色.
我们用带权并查集来维护他们之间的关系.
边为0,表示为相同颜色,边为1,表示不同颜色.同时我们还要统计每个联通块中两种颜色的节点分别有多少个.每个联通块对答案的贡献为两种颜色中较小的数量.
对于只被一个集合包含的元素,我让一个特殊集合包含他(0集合). 因为特殊集合并不存在,因此对于0集合所在联通块,只能选0集合颜色之外的另一种颜色.
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef vector<int> vi;
#define debug(x) cerr<<#x<<' '<<x<<'\n'
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
const int maxn=3e5+10;
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
vi s[maxn];
int n,k,ch[maxn][2];
int fa[maxn],num[maxn][2],ans=0,col[maxn];
int Find(int x) {
if(x==fa[x]) return x;
else {
int tmp=Find(fa[x]);
col[x]^=col[fa[x]];
return fa[x]=tmp;
}
}
void solve(int id,int ty) {
if(id==0) ans+=ty*num[0][1];
else ans+=ty*min(num[id][1],num[id][0]);
}
void Union(int a,int b,int ty) {
int aa=Find(a),bb=Find(b);
ty=ty^col[a]^col[b];
if(aa==bb) return ;
if(aa>bb) swap(aa,bb);
solve(aa,-1);
solve(bb,-1);
num[aa][0]+=num[bb][0^ty];
num[aa][1]+=num[bb][1^ty];
solve(aa,1);
fa[bb]=aa;
col[bb]=ty;
}
char str[maxn];
int main()
{
ios::sync_with_stdio(false);cin.tie(0);
cin>>n>>k;
cin>>str;
memset(ch,-1,sizeof(ch));
rep(i,1,k) {
int num;
cin>>num;
while(num--) {
int x;
cin>>x;
s[i].pb(x);
if(ch[x][0]==-1) ch[x][0]=i;
else ch[x][1]=i;
}
}
rep(i,1,n) {
if(ch[i][0]==-1) ch[i][0]=0;
if(ch[i][1]==-1) ch[i][1]=0;
}
rep(i,0,k) {
num[i][0]=1;
fa[i]=i;
}
rep(i,1,n) {
if(str[i-1]=='1') Union(ch[i][0],ch[i][1],0);
else Union(ch[i][0],ch[i][1],1);
cout<<ans<<'\n';
}
return 0;
}