Prefix-Enlightenment-带权并查集

题目

题目链接

分析

首先任意三个集合的交为空集,因此一个元素最多出现在两个集合中.

其次每个集合最多被选一次,因为同一个集合被选两次,就等同于不选这个集合.

下面我们考虑一个元素被两个集合包含的情况.(只被一个集合包含的情况比较简单)

我们把每个集合看做为一个节点,用染色法来表示是否选择(比如黑色表示选,白色表示不选).

设这个元素为 x x x,包含 x x x的两个集合为 s 1 , s 2 s_1,s_2 s1,s2

如果第 x x x位的灯泡为 打开,那么我要么不选,要么就把 s 1 s_1 s1 s 2 s_2 s2都选.

即: s 1 , s 2 s_1,s_2 s1,s2 为同一种颜色.

如果第 x x x位的灯泡为 关闭,那么我必须在 s 1 s1 s1 s 2 s_2 s2中选一个.

即: s 1 , s 2 s_1,s_2 s1,s2为不同的颜色.

我们用带权并查集来维护他们之间的关系.

边为0,表示为相同颜色,边为1,表示不同颜色.同时我们还要统计每个联通块中两种颜色的节点分别有多少个.每个联通块对答案的贡献为两种颜色中较小的数量.

对于只被一个集合包含的元素,我让一个特殊集合包含他(0集合). 因为特殊集合并不存在,因此对于0集合所在联通块,只能选0集合颜色之外的另一种颜色.

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef vector<int> vi;
#define debug(x) cerr<<#x<<' '<<x<<'\n'
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
const int maxn=3e5+10;
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
vi s[maxn];
int n,k,ch[maxn][2];
int fa[maxn],num[maxn][2],ans=0,col[maxn];
int Find(int x) {
    if(x==fa[x]) return x;
    else {
        int tmp=Find(fa[x]);
        col[x]^=col[fa[x]];
        return fa[x]=tmp;
    } 
}
void solve(int id,int ty) {
    if(id==0) ans+=ty*num[0][1];
    else ans+=ty*min(num[id][1],num[id][0]);
}
void Union(int a,int b,int ty) {
    int aa=Find(a),bb=Find(b);
    ty=ty^col[a]^col[b];
    if(aa==bb) return ;
    if(aa>bb) swap(aa,bb);
    solve(aa,-1);
    solve(bb,-1);
    num[aa][0]+=num[bb][0^ty];
    num[aa][1]+=num[bb][1^ty];
    solve(aa,1);
    fa[bb]=aa;
    col[bb]=ty;
}
char str[maxn];
int main()
{
    ios::sync_with_stdio(false);cin.tie(0);
    cin>>n>>k;
    cin>>str;
    memset(ch,-1,sizeof(ch));
    rep(i,1,k) {
        int num;
        cin>>num;
        while(num--) {
            int x;
            cin>>x;
            s[i].pb(x);
            if(ch[x][0]==-1) ch[x][0]=i;
            else ch[x][1]=i;
        }
    }
    rep(i,1,n) {
        if(ch[i][0]==-1) ch[i][0]=0;
        if(ch[i][1]==-1) ch[i][1]=0;
    }    
    rep(i,0,k) {
        num[i][0]=1;
        fa[i]=i;
    }
    rep(i,1,n) {
       if(str[i-1]=='1') Union(ch[i][0],ch[i][1],0); 
       else Union(ch[i][0],ch[i][1],1);
       cout<<ans<<'\n';
    }
    return 0;
}
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值