Halcon +HALCON切换助手 + DLT 安装简化教程

Halcon安装教程

1、Halcon网址:https://www.mvtec.com/cn/products/halcon/

2、点击下载区域,登录Halcon账号,这个需要注册。
在这里插入图片描述

3、选择下载HALCON

在这里插入图片描述

4、选择版本和操作系统,下载完整版
在这里插入图片描述

5、下载完成后,在本地找到halcon-22.11.1.2-x64-win64.zip压缩包,解压。

6、双击打开som.exe

在这里插入图片描述

7、弹出一个网页,点击AVALABLE,发现Halcon22.11安装包,点击INSTALL(因为我之前安装过,所以INSTALL是灰色的)
在这里插入图片描述

8、安装成功后,打开Halcon桌面快捷键。报错,需要用HALCON切换助手进行激活
在这里插入图片描述

在这里插入图片描述

Halcon切换助手安装

1、打开这个网址https://www.51halcon.com/forum.php?mod=viewthread&tid=295&highlight=%E5%88%87%E6%8D%A2

2、会有登录界面,选择QQ登录,不要手动注册,注册验证码太难了。

3、登录成功,并进入网址后,往下翻,选择下载方式,一般直接下载,方便。实在不行可以选择网盘下载。

百度云盘链接:https://pan.baidu.com/s/1D9SATWc_UMo1h3Gj3LLm6g提取码:htuy在这里插入图片描述
4、下载成功后,找到压缩包,解压。
在这里插入图片描述
5、双击打开HSA.exe,可能会闪退,你需要在右下角找到
在这里插入图片描述

6、可以看到我的License已经更新到8月份,只有这里显示状态为本月的license时,Halcon才算激活。如果有其他字符,说明没有激活
在这里插入图片描述

7、点击设置,点击申请Token,会弹出一个网页。
在这里插入图片描述

8、将接口账号和接口密钥复制到上面HSA的UID和Token中。点击保存,授权
在这里插入图片描述
9、点击环境,自动检测,查看有无异常目录(一般HALCON例程目录和HALCON图像目录加载不上来,显示异常,需要手动增加)
在这里插入图片描述

10、如果出现异常目录,点击版本,在例程目录和图像目录中添加;
例程目录通常为
C:\Users\Administrator\AppData\Roaming\MVTec\HALCON-22.11-Steady\examples
图像目录通常为
C:\Users\Administrator\AppData\Roaming\MVTec\HALCON-22.11-Steady\examples\images
进入文件夹确认是否为你的目录
如果不是,通过everything搜索pill(属于例程中的图片文件夹名称)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
11、目录确认后,再次点击环境,自动检测,会加载路径;如果还未加载,建议重启软件。

12、环境确认完毕后,点切换,点击22.11S,桌面会闪一下,然后LIcense变为本月,即为激活成功。如果不成功,重复激活
在这里插入图片描述

13、打开Halcon软件,应该是繁体字,搜先点击编辑 —> 参数选择 —> 语言 —> 选择Chinese(Simpleed),重启软件生效。
在这里插入图片描述

14、随便打开一个例程,测试一下。可以跑,不报错,即为成功
在这里插入图片描述
在这里插入图片描述

DLT深度学习工具安装

1、点击下载升读学习工具
在这里插入图片描述

2、往下翻,选择下载完整版
在这里插入图片描述

3、同样,下载完成后,找到压缩包,解压。

4、打开文件夹,点击dlt-23.04-offline.exe,打开网页,点击x关闭welcome画面,点击AVAILABIE,发现Deep Learnning tool,点击INSTALL。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5、选择ALL,点击APPLY
在这里插入图片描述

6、安装完毕,点击桌面的快捷键,打开DLT工具
在这里插入图片描述
在这里插入图片描述

7、DLT工具的语义分割无法进行训练,评估,只能进行数据标注,数据集导出(导出在坐上角);目标检测等功能可以从数据标注到模型训练,评估一条龙。
在这里插入图片描述

环境配置过程中如有疑问,+v Dakchueng或者DY搜索图像处理大学堂有视频教程。整体来说HALCON深度学习功能比较强大, 而且操作简便,易上手。但是检测效果上yolov8更胜一筹,但是对于新手来说Halcon深度学习更容易入门,出成果。

### HalconDLT(直接线性变换)实现方法 在计算机视觉领域,直接线性变换(Direct Linear Transformation, DLT)是一种用于估计两个二维平面之间投影变换的方法。该算法广泛应用于图像配准、三维重建等领域。 对于Halcon中的DLT实现,主要依赖于`hom_vector_to_hom_mat2d`算子来求解透视变换矩阵(Homography Matrix)[^1]。具体过程如下: 给定一组对应点集{(xi, yi)} 和 {(Xi,Yi)}, i=1...n(n≥4),其中(xi,yi)代表源图上的像素坐标;而(Xi,Yi)则是目标图上对应的像素位置。利用这些匹配好的特征点对,可以构建超定方程组并采用最小二乘法求得最优解——即所求的Homography Matrix H。 ```cpp // 假设有四组已知的世界坐标系下的点world_points和相机成像平面上相应的图像坐标image_points tuple_world := [Xw1,Xw2,Xw3,Xw4] tuple_image := [Xi1,Xi2,Xi3,Xi4] // 调用函数计算单应性矩阵 hom_vector_to_hom_mat2d (tuple_world, tuple_image, HomMat2D) // 应用得到的单应性矩阵进行图像转换 projective_trans_image (ImageOriginal, ImageTransformed, HomMat2D, 'bilinear') ``` 上述代码片段展示了如何基于至少四个不共线的同名点对,在Halcom环境下执行DLT操作以获取两幅图片间的映射关系,并据此实施项目变换[^2]。 值得注意的是,实际应用时往往需要更多数量级以上的样本点来进行更精确地拟合,从而提高鲁棒性和准确性。此外,还可以考虑引入随机抽样一致性(Random Sample Consensus, RANSAC)机制进一步优化模型参数估计效果[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dakchueng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值