动态规划经典题目:公共最长子序列问题。
问题描述:
给定两个字符串str1和str2,返回两个字符串的最长公共子序列的长度。
给一个例子:str1=“1A2C3D4B56”,str2=“B1D23CA45B6A”。那么公共最长子序列为”123456”或者”12C4B6”亦或者”12C456”,其长度都是6,所以返回6即可。
暴力法不多说,就是一个一个对比。动态规划的基本思路是用空间换时间,本题也不例外。将str1和str2先由字符串转换为字符数组,申请一个二维数组dp[n][m],n为str1的长度,m为str2的长度。而dp[i][j]代表的是str1[0~i]与str2[0~j]的最长公共子序列长度。
对于二维数组,通常的做法是先求出第一行与第一列。第一行代表着str1[0]与str2[0~j]的最长公共子序列长度,那么最长就是1,当str1[0]=str2[j]时,从str2[j]到str2[m]其dp[0][j~m]=1。同理第一列也如此。而对于非第一行与第一列的dp[i][j],有三种值可以候选,第一种是它的值等于dp[i-1][j],第二种它的值等于dp[i][j-1],第三种当str1[i]=str2[j]时,dp[i][j]等于dp[i-1][j-1]+1。具体是这个三个值的哪一个?哪个大就是哪个。下面列出表格,可以进行对照验证。
B | 1 | D | 2 | 3 | C | A | 4 | 5 | B | 6 | A | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||
1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
A | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
2 | 2 | 0 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
C | 3 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
3 | 4 | 0 | 1 | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
D | 5 | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
4 | 6 | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 |
B | 7 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 5 | 5 | 5 |
5 | 8 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 |
6 | 9 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 5 | 6 | 6 |
大家可以根据这个表格进行验证和推断。表格更直观一些。
下边给出代码。
public int findLCS(String A,int n,String B,int m){
if(A == null || B == null || n <= 0 || m <= 0){
return 0;
}
char[] str1 = A.toCharArray();
char[] str2 = B.toCharArray();
int[][] dp = new int[n][m];
//第一行初始化
for(int i = 0; i < m; i++){
if(str1[0] = str2[i]){
while(i < m){
dp[0][i] = 1;
i++;
}
}else{
dp[0][i] = 0;
}
}
//第一列初始化
for(int i = 0; i < n; i++){
if(str1[i] = str2[0]){
while(i < n){
dp[i][0] = 1;
i++;
}
}else{
dp[i][0] = 0;
}
}
for(int i = 1; i < n; i++){
for(int j = 1;j < m; j++){
if(str1[i] != str1[j]){
dp[i][j] = dp[i-1][j] > dp[i][j-1] ? dp[i-1][j] : dp[i][j-1];
}else if((dp[i-1][j-1]+1) >= dp[i-1][j] && (dp[i-1][j-1]+1) >= dp[i][j-1]){
dp[i][j] = dp[i-1][j-1]+1;
}else{
dp[i][j] = dp[i-1][j] > dp[i][j-1] ? dp[i-1][j] : dp[i][j-1];
}
}
}
return dp[n-1][m-1];
}