中缀表达式转换为后缀表达式

                                                           中缀表达式转换为后缀表达式

转载自http://blog.csdn.net/ssjhust123/article/details/8001651

一、后缀表达式求值

后缀表达式也叫逆波兰表达式,其求值过程可以用到栈来辅助存储。假定待求值的后缀表达式为:6  5  2  3  + 8 * + 3  +  *,则其求值过程如下:

1)遍历表达式,遇到的数字首先放入栈中,此时栈如下所示:

2)接着读到“+”,则弹出3和2,执行3+2,计算结果等于5,并将5压入到栈中。

3)读到8,将其直接放入栈中。

4)读到“*”,弹出8和5,执行8*5,并将结果40压入栈中。而后过程类似,读到“+”,将40和5弹出,将40+5的结果45压入栈...以此类推。最后求的值288。

 

 

二、中缀表达式转后缀表达式

2.1)规则

中缀表达式a + b*c + (d * e + f) * g,其转换成后缀表达式则为a b c * + d e * f  + g * +。

转换过程需要用到栈,具体过程如下:

1)如果遇到操作数,我们就直接将其输出。

2)如果遇到操作符,则我们将其放入到栈中,遇到左括号时我们也将其放入栈中。

3)如果遇到一个右括号,则将栈元素弹出,将弹出的操作符输出直到遇到左括号为止。注意,左括号只弹出并不输出。

4)如果遇到任何其他的操作符,如(“+”, “*”,“(”)等,从栈中弹出元素直到遇到发现更低优先级的元素(或者栈为空)为止。弹出完这些元素后,才将遇到的操作符压入到栈中。有一点需要注意,只有在遇到" ) "的情况下我们才弹出" ( ",其他情况我们都不会弹出" ( "。也就是说这种操作," + "的优先级最低," ( "优先级最高。

5)如果我们读到了输入的末尾,则将栈中所有元素依次弹出。

 

2.2)实例

规则很多,还是用实例比较容易说清楚整个过程。以上面的转换为例,输入为a + b * c + (d * e + f)*g,处理过程如下:

1)首先读到a,直接输出。

2)读到“+”,将其放入到栈中。

3)读到b,直接输出。

此时栈和输出的情况如下:

 

4)读到“*”,因为栈顶元素"+"优先级比" * " 低,所以将" * "直接压入栈中。

5)读到c,直接输出。

此时栈和输出情况如下:

 

6)读到" + ",因为栈顶元素" * "的优先级比它高,所以弹出" * "并输出, 同理,栈中下一个元素" + "优先级与读到的操作符" + "一样,所以也要弹出并输出。然后再将读到的" + "压入栈中。

此时栈和输出情况如下:

 

7)下一个读到的为"(",它优先级最高,所以直接放入到栈中。

8)读到d,将其直接输出。

此时栈和输出情况如下:

 

9)读到" * ",由于只有遇到" ) "的时候左括号"("才会弹出,所以" * "直接压入栈中。

10)读到e,直接输出。

此时栈和输出情况如下:

 

11)读到" + ",弹出" * "并输出,然后将"+"压入栈中。

12)读到f,直接输出。

此时栈和输出情况:

 

 

13)接下来读到“)”,则直接将栈中元素弹出并输出直到遇到"("为止。这里右括号前只有一个操作符"+"被弹出并输出。

 

14)读到" * ",压入栈中。读到g,直接输出。

 

15)此时输入数据已经读到末尾,栈中还有两个操作符“*”和" + ",直接弹出并输出。

至此整个转换过程完成。程序实现代码后续再补充了。

 

 2.3)转换的另一种方法

1)先按照运算符的优先级对中缀表达式加括号,变成( ( a+(b*c) ) + ( ((d*e)+f) *g ) )

2)将运算符移到括号的后面,变成((a(bc)*)+(((de)*f)+g)*)+

3)去掉括号,得到abc*+de*f+g*+

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值