- 博客(8)
- 资源 (2)
- 收藏
- 关注
原创 Recent Advances in Open Set Recognition: A Survey
摘要:在现实的识别/分类任务中,由于受到各种客观因素的限制,在训练一个识别器或分类器时,通常很难收集到训练样本来涵盖所有的类。更现实的情况是开放集识别(open set recognition, OSR),在训练时存在对世界不完整的知识,测试时可以将未知的类提交给算法,这就要求分类器不仅要对可见的类进行准确的分类,还要有效地处理不可见的类。本文提供了对现有开放集识别技术的全面调查,涵盖了从相关定义、模型表示、数据集、评估标准和算法比较等各个方面。此外,我们还简要分析了OSR与零样本、一次样本(少样本)识别/
2020-07-19 17:26:26 5291 6
原创 论文阅读与复现:Generative-discriminative Feature Representations for Open-set Recognition
关于开集识别,最近才接触到的知识,实际上就是在测试时把训练过程中没有见到过的样本识别出来,至于这些开放集样本的类别不做考虑,仅仅检测出它是新类即可。乍一看,开集识别和之前了解过的广义零样本学习很类似,广义零样本学习不止检测出新类并且能够进行识别,这借助于外界的附加知识,比如label和属性,零样本学习要用到自然语言处理的知识,最常用的工具包是word2vec。与零样本学习不同的是,这里的开集识别并没有用到附加知识,这在一定程度上减少了因为语义设计不完整而造成的损失,反之去寻找一个边界,新类和旧...
2020-07-09 11:05:46 2660 4
原创 零样本目标检测--GTNet: Generative Transfer Network for Zero-Shot Object Detection
GTNet:用于零样本目标检测的生成迁移网络摘要: 提出了一种用于零样本目标检测的生成迁移网络(GTNet)。GTNet由目标检测模块和知识迁移模块组成。目标检测模块可以学习大规模的已知领域知识;知识迁移模块利用特征合成器生成未知的类特征,用于为目标检测模块训练新的分类层。为了综合类内方差和IoU方差,我们设计了一个基于IoU感知的生成式对抗网络(IoUGAN)作为特征合成器,...
2020-03-05 20:49:35 4960 2
原创 视觉追踪论文:基于孪生、生成对抗和分割
这篇博客是五篇论文的翻译和大概理解: Fast Online Object Tracking and Segmentation: A Unifying Approach VITAL: VIsual Tracking via Adversarial Learning Learning Discriminative Model Prediction fo...
2019-11-18 23:16:23 1319
原创 深度神经网络进行动态心电图心律不齐的检测和分类 nature论文学习
2019年发布在nature上的文章:利用深度神经网络进行动态心电图心律不齐的检测和分类论文链接:https://www.nature.com/articles/s41591-018-0268-3论文资源://download.csdn.net/download/whitelg/11862908 计算机心电图(ECG)解释在临床心电图工作流程中起着至关重要的作用。文章...
2019-10-18 14:37:15 6587
原创 Multivariate LSTM-FCNs for Time Series Classification论文学习
时间序列分类是2019年的文章,文章链接:https://arxiv.org/abs/1801.04503Q1:什么是时间序列?A1:时间序列是一组按时间顺序的数字序列,它既具有延续性又具有随机性Q2:时间序列分为哪几类?A1:详情参考博客https://blog.csdn.net/kylin_learn/article/details/85135900分为单变量、多变量、单步、...
2019-09-28 19:56:50 7583 1
原创 MOTS: Multi-Object Tracking and Segmentation论文学习
三个创新点:①一个密集型像素标记的跟踪数据集(同时用于视频跟踪与分割的基于KITTI和MOTChallenge的数据集,使用半自动注释过程为两个现有跟踪数据集创建密集的像素级注释)②一种多目标跟踪的度量指标③一种新的基线方法,该方法联合处理检测、跟踪和分割与单一卷积网络文章中的文章贡献翻译为:(1)基于流行的KITTI和MOTChallenge数据集,提供了两个具有时间一致性对...
2019-09-21 14:05:28 2217
原创 Temporally Identity-Aware SSD with Attentional LSTM 论文学习
多目标跟踪常用的是tracking by detection,这种方法就是将每帧中所有感兴趣的目标物体均检测出来,然后与前一帧检测出来的目标进行关联,从而实现跟踪效果。这种方法的前提就是要拥有一种表现好的目标检测算法还有好的关联方法。具体流程是:step1:使用目标检测算法将每帧中感兴趣的目标检测出来,得到对应的(坐标,分类,可信度),假设检测出来的目标个数为Mstep2:通过某种方式...
2019-09-20 14:35:18 1244
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人