4.2随机抽取25个网络用户,得到他们的年龄数据如表所示。
网络用户的年龄数据(单位:周岁)
要求:
(1)计算众数、中位数。
(2)计算四分位数。
(3)计算平均数和标准差。
(4)计算偏态系数和峰态系数。
(5)对网民年龄的分布特征进行综合分析。
解:(1)
解法一:对表4-4中数据按从小到大顺序排列:
由排序数据可知,年龄出现频数最多的是19和23,都出现3次,所以有两个众数,即Mo=19和Mo=23。
由于中位数位置=(n+1)/n=(25+1)/2=13
所以Me=23(岁)
解法二:打开excel插入众数公式MODE、中位数公式COUNTIF
(2)
解法一:由题中数据可计算四分位数:
①QL位置=n/4=25/4=6.25
即QL在第6个数值(19)和第7个数值(19)之间0.25的位置上,
因此QL=19+0.25×(19-19)=19(岁)
②由于QU位置=3×25/4=25/4=18.75
即QU在第18个数值(25)和第19个数值(27)之间0.75的位置上,
因此QU=25+0.75×(27-25)=26.5(岁)
解法二:打开excel插入公式QUARTILE选择四分点
(3)
解法一:平均数
由平均数x=24可得:
解法二:打开excel插入标准差公式STDEV.P——插入平均数公式AVERAGE
(4)
解法一:偏态系数:
峰态系数:
解法二:打开excel插入偏态系数公式SKEW——峰态系数公式KURT
(5)
解法一:对网民年龄的分布特征进行综合分析的结果如下:从众数、中位数和平均数来看,网民年龄在23岁左右的人占多数;标准差较大,说明网民之间的年龄差异较大;偏态系数大于1,表明网民的年龄分布为右偏,且偏斜程度很大。峰态系数为正值,是尖峰分布,表明网民的年龄分布较为集中。
解法二:打开excel 选择——数据——数据分析——描述统计