目录
1.购物单
小明刚刚找到工作,老板人很好,只是老板夫人很爱购物。老板忙的时候经常让小明帮忙到商场代为购物。小明很厌烦,但又不好推辞。
这不,XX大促销又来了!老板夫人开出了长长的购物单,都是有打折优惠的。
小明也有个怪癖,不到万不得已,从不刷卡,直接现金搞定。
现在小明很心烦,请你帮他计算一下,需要从取款机上取多少现金,才能搞定这次购物。取款机只能提供100元面额的纸币。小明想尽可能少取些现金,够用就行了。
你的任务是计算出,小明最少需要取多少现金。以下是让人头疼的购物单,为了保护隐私,物品名称被隐藏了。
-----------------
**** 180.90 88折
**** 10.25 65折
**** 56.14 9折
**** 104.65 9折
**** 100.30 88折
**** 297.15 半价
**** 26.75 65折
**** 130.62 半价
**** 240.28 58折
**** 270.62 8折
**** 115.87 88折
**** 247.34 95折
**** 73.21 9折
**** 101.00 半价
**** 79.54 半价
**** 278.44 7折
**** 199.26 半价
**** 12.97 9折
**** 166.30 78折
**** 125.50 58折
**** 84.98 9折
**** 113.35 68折
**** 166.57 半价
**** 42.56 9折
**** 81.90 95折
**** 131.78 8折
**** 255.89 78折
**** 109.17 9折
**** 146.69 68折
**** 139.33 65折
**** 141.16 78折
**** 154.74 8折
**** 59.42 8折
**** 85.44 68折
**** 293.70 88折
**** 261.79 65折
**** 11.30 88折
**** 268.27 58折
**** 128.29 88折
**** 251.03 8折
**** 208.39 75折
**** 128.88 75折
**** 62.06 9折
**** 225.87 75折
**** 12.89 75折
**** 34.28 75折
**** 62.16 58折
**** 129.12 半价
**** 218.37 半价
**** 289.69 8折
--------------------需要说明的是,88折指的是按标价的88%计算,而8折是按80%计算,余者类推。
特别地,半价是按50%计算。请提交小明要从取款机上提取的金额,单位是元。
答案是一个整数,类似4300的样子,结尾必然是00,不要填写任何多余的内容。
【解析】直接将购物单复制到eclipse里 然后选中购物单内容按Ctrl+F 将****换成+,将“折”换成空格,“半折”换成*0.5,然后自己在数字前加*和小数点
public class Main {
public static void main(String[] args) {
double sum = 180.90 *0.88
+ 10.25 *0.65
+ 56.14 *0.9
+ 104.65 *0.9
+ 100.30 *0.88
+ 297.15 *0.5
+ 26.75 *0.65
+ 130.62 *0.5
+ 240.28 *0.58
+ 270.62 *0.8
+ 115.87 *0.88
+ 247.34 *0.95
+ 73.21 *0.9
+ 101.00 *0.5
+ 79.54 *0.5
+ 278.44 *0.7
+ 199.26 *0.5
+ 12.97 *0.9
+ 166.30 *0.78
+ 125.50 *0.58
+ 84.98 *0.9
+ 113.35 *0.68
+ 166.57 *0.5
+ 42.56 *0.9
+ 81.90 *0.95
+ 131.78 *0.8
+ 255.89 *0.78
+ 109.17 *0.9
+ 146.69 *0.68
+ 139.33 *0.65
+ 141.16 *0.78
+ 154.74 *0.8
+ 59.42 *0.8
+ 85.44 *0.68
+ 293.70 *0.88
+ 261.79 *0.65
+ 11.30 *0.88
+ 268.27 *0.58
+ 128.29 *0.88
+ 251.03 *0.8
+ 208.39 *0.75
+ 128.88 *0.75
+ 62.06 *0.9
+ 225.87 *0.75
+ 12.89 *0.75
+ 34.28 *0.75
+ 62.16 *0.58
+ 129.12 *0.5
+ 218.37 *0.5
+ 289.69 *0.8;
System.out.println(sum);
}
}
答案:5200
2.纸牌三角形(全排列)
A,2,3,4,5,6,7,8,9 共9张纸牌排成一个正三角形(A按1计算)。要求每个边的和相等。
下图就是一种排法(如有对齐问题,参看p1.png)。这样的排法可能会有很多。
如果考虑旋转、镜像后相同的算同一种,一共有多少种不同的排法呢?
请你计算并提交该数字。
注意:需要提交的是一个整数,不要提交任何多余内容。
【解析】可以用数组表示,分别表示为三条边 arr[1]+arr[2]+arr[3]+arr[4]
arr[7]+arr[8]+arr[9]+arr[1]
arr[4]+arr[5]+arr[6]+arr[7]
判断是否相等,注意镜像和旋转
所以总和要/6
public class Main{
static int arr[]=new int[10];
static boolean vis[]=new boolean[10];
static int sum=0;
static void dfs(int step) {
if(step==10)
{
if(arr[1]+arr[2]+arr[3]+arr[4]==arr[4]+arr[5]+arr[6]+arr[7]&&
arr[7]+arr[8]+arr[9]+arr[1]==arr[4]+arr[5]+arr[6]+arr[7])
sum++;
return;
}
for(int i=1;i<=9;i++)
{
if(!vis[i]) {
vis[i]=true;
arr[step]=i;
dfs(step+1);
vis[i]=false;
}
}
}
public static void main(String[] args) {
dfs(1);
System.out.println(sum/6);//这里其实是count/3/2,除以3是排除了旋转,除以2是排除了镜像
}
}
答案:144
3.承压计算
X星球的高科技实验室中整齐地堆放着某批珍贵金属原料。
每块金属原料的外形、尺寸完全一致,但重量不同。
金属材料被严格地堆放成金字塔形。
假设每块原料的重量都十分精确地平均落在下方的两个金属块上,
最后,所有的金属块的重量都严格精确地平分落在最底层的电子秤上。
电子秤的计量单位很小,所以显示的数字很大。工作人员发现,其中读数最小的电子秤的示数为:2086458231
请你推算出:读数最大的电子秤的示数为多少?注意:需要提交的是一个整数,不要提交任何多余内容。
7
5 8
7 8 8
9 2 7 2
8 1 4 9 1
8 1 8 8 4 1
7 9 6 1 4 5 4
5 6 5 5 6 9 5 6
5 5 4 7 9 3 5 5 1
7 5 7 9 7 4 7 3 3 1
4 6 4 5 5 8 8 3 2 4 3
1 1 3 3 1 6 6 5 5 4 4 2
9 9 9 2 1 9 1 9 2 9 5 7 9
4 3 3 7 7 9 3 6 1 3 8 8 3 7
3 6 8 1 5 3 9 5 8 3 8 1 8 3 3
8 3 2 3 3 5 5 8 5 4 2 8 6 7 6 9
8 1 8 1 8 4 6 2 2 1 7 9 4 2 3 3 4
2 8 4 2 2 9 9 2 8 3 4 9 6 3 9 4 6 9
7 9 7 4 9 7 6 6 2 8 9 4 1 8 1 7 2 1 6
9 2 8 6 4 2 7 9 5 4 1 2 5 1 7 3 9 8 3 3
5 2 1 6 7 9 3 2 8 9 5 5 6 6 6 2 1 8 7 9 9
6 7 1 8 8 7 5 3 6 5 4 7 3 4 6 7 8 1 3 2 7 4
2 2 6 3 5 3 4 9 2 4 5 7 6 6 3 2 7 2 4 8 5 5 4
7 4 4 5 8 3 3 8 1 8 6 3 2 1 6 2 6 4 6 3 8 2 9 6
1 2 4 1 3 3 5 3 4 9 6 3 8 6 5 9 1 5 3 2 6 8 8 5 3
2 2 7 9 3 3 2 8 6 9 8 4 4 9 5 8 2 6 3 4 8 4 9 3 8 8
7 7 7 9 7 5 2 7 9 2 5 1 9 2 6 5 3 9 3 5 7 3 5 4 2 8 9
7 7 6 6 8 7 5 5 8 2 4 7 7 4 7 2 6 9 2 1 8 2 9 8 5 7 3 6
5 9 4 5 5 7 5 5 6 3 5 3 9 5 8 9 5 4 1 2 6 1 4 3 5 3 2 4 1
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
import java.util.Scanner;
public class Main{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
double[][] a = new double[30][30];
for (int i = 0; i < a.length-1; i++) {
for (int j = 0; j <= i; j++) {
a[i][j] = sc.nextInt();
}
}
for (int i = 1; i < a.length; i++) {
for (int j = 0; j <= i; j++) {
if(j>0){
a[i][j]+=(double)a[i-1][j-1]*1.0/2+(double)a[i-1][j]*1.0/2;
}else if(j==0){
a[i][j]+=(double)a[i-1][j]*1.0/2;
}
}
}
for (int i = 0; i < a.length; i++) {//给最后一行排下序
for (int j = 0; j < a.length-1-i; j++) {
if(a[29][j]>a[29][j+1]){
double t = a[29][j];
a[29][j] = a[29][j+1];
a[29][j+1] = t;
}
}
}
System.out.println((double)2086458231*1.0*a[29][29]/a[29][0]);
}
}
import java.util.*;
public class Main{
static long[][] arr = new long[30][30];
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long factor=1;//2的30次方
for(int i = 0;i < 30;i++) {
factor<<=1;
}
//输入数据放入二维数组
for(int i = 0;i < 29;++i) {
for(int j = 0;j <=i;++j) {
long a=sc.nextLong();
arr[i][j]=a*factor;//每个数都乘以factor
}
}
//自上而下处理a[i][j]*factor(2的30次方)-->除以2,计入a[i+1][j]和a[i+1][j+1]
//循环处理第1~N-1行
for(int i = 0;i < 29;++i) {
for(int j = 0;j <= i;++j) {
long ha = arr[i][j]/2;
arr[i+1][j]+=ha;
arr[i+1][j+1]+=ha;
}
}
//对a[N-1]这一行进行排序,查看最小值与factor之间的倍数关系,决定最大值是多少
Arrays.sort(arr[29]);
System.out.println(arr[29][0]);
System.out.println(arr[29][29]);
System.out.println(arr[29][29]/(arr[29][0]/2086458231));
}
}
答案:72665192664
4.魔方状态
二阶魔方就是只有2层的魔方,只由8个小块组成。
如图p1.png所示。小明很淘气,他只喜欢3种颜色,所有把家里的二阶魔方重新涂了颜色,如下:
前面:橙色
右面:绿色
上面:黄色
左面:绿色
下面:橙色
后面:黄色请你计算一下,这样的魔方被打乱后,一共有多少种不同的状态。
如果两个状态经过魔方的整体旋转后,各个面的颜色都一致,则认为是同一状态。
请提交表示状态数的整数,不要填写任何多余内容或说明文字。
import java.util.HashSet;
import java.util.Set;
public class Main {
static char[][] start = {"oybbgb".toCharArray(),
"oygbbb".toCharArray(),
"bygbby".toCharArray(),
"bybbgy".toCharArray(),
"obbogb".toCharArray(),
"obgobb".toCharArray(),
"bbgoby".toCharArray(),
"bbbogy".toCharArray()};
static char[][][] q = new char[2000000][8][6];
static HashSet<String> all_state = new HashSet<String>();
static int front, tail;
static String to_string(char[][] a) {
String ans = "";
for (int i = 0; i < 8; ++i) {
ans += new String(a[i]);
}
return ans;
}
private static void swap(char[] a, int i, int j) {
char t = a[i];
a[i] = a[j];
a[j] = t;
}
private static void swap(char[][] a, int i, int j) {
char[] t = a[i];
a[i] = a[j];
a[j] = t;
}
//上层的块的旋转,面的相对位置调换
static void ucell(char[] a) {
swap(a, 0, 2);
swap(a, 2, 5);
swap(a, 5, 4);
}
//上层顺时针旋转
static void u(char[][] s) {
ucell(s[0]);
ucell(s[1]);
ucell(s[2]);
ucell(s[3]);
// 块的相对位置调换
swap(s, 1, 0);
swap(s, 2, 1);
swap(s, 3, 2);
}
//右层旋转是面的位置变化
static void rcell(char[] a) {
swap(a, 1, 0);
swap(a, 0, 3);
swap(a, 3, 5);
}
static void r(char[][] s)//魔方右层顺时针转
{
rcell(s[1]);
rcell(s[2]);
rcell(s[6]);
rcell(s[5]);
// 块的位置变化
swap(s, 2, 1);
swap(s, 5, 1);
swap(s, 6, 5);
}
static void fcell(char[] a) {
swap(a, 2, 1);
swap(a, 1, 4);
swap(a, 4, 3);
}
static void f(char[][] s)//前面一层 顺时针转
{
fcell(s[0]);
fcell(s[1]);
fcell(s[4]);
fcell(s[5]);
swap(s, 1, 5);
swap(s, 0, 1);
swap(s, 4, 0);
}
static void uwhole(char[][] s)//整个魔方从顶部看 顺时针转 用于判重
{
u(s);//上层旋转
// 下层旋转
ucell(s[4]);
ucell(s[5]);
ucell(s[6]);
ucell(s[7]);
// 完成自旋后,块的位置变动
swap(s, 5, 4);
swap(s, 6, 5);
swap(s, 7, 6);
}
static void fwhole(char[][] s)//整个魔方从前面看 顺时针转 用于判重
{
f(s);
fcell(s[2]);
fcell(s[6]);
fcell(s[7]);
fcell(s[3]);
swap(s, 2, 6);
swap(s, 3, 2);
swap(s, 7, 3);
}
static void rwhole(char[][] s)//整个魔方从右边看 顺时针转 用于判重
{
r(s);
rcell(s[0]);
rcell(s[3]);
rcell(s[4]);
rcell(s[7]);
swap(s, 3, 7);
swap(s, 0, 3);
swap(s, 4, 0);
}
static boolean try_insert(char[][] s) {
char[][] k = new char[8][6];
memcpy(k, s);
for (int i = 0; i < 4; i++) {
fwhole(k);
for (int j = 0; j < 4; j++) {
uwhole(k);
for (int q = 0; q < 4; q++) {
rwhole(k);
if (all_state.contains(to_string(k))) {
return false;
}
}
}
}
all_state.add(to_string(k));
return true;
}
private static void memcpy(char[][] k, char[][] s) {
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 6; j++) {
k[i][j] = s[i][j];
}
}
}
static void solve() {
front = 0;
tail = 1;
all_state.add(to_string(start));
memcpy(q[front], start);//填充q[0],相当于第一个状态入队列
while (front < tail) {
/*将其所有变形,尝试加入set中*/
memcpy(q[tail], q[front]);//拷贝到tail
u(q[tail]);//上层顺时针旋转
if (try_insert(q[tail])) {
tail++;//扩展队列
}
memcpy(q[tail], q[front]);//拷贝到tail
r(q[tail]);//右层顺时针旋转
if (try_insert(q[tail])) {
tail++;//扩展队列
}
memcpy(q[tail], q[front]);//拷贝到tail
f(q[tail]);//前顺时针旋转
if (try_insert(q[tail])) {
tail++;//扩展队列
}
front++;//弹出队首
// cout << front << " " << tail << endl;
}
System.out.println(front);
}
public static void main(String[] args) {
solve();
}
}
答案:229878
5.取数位
求1个整数的第k位数字有很多种方法。
以下的方法就是一种。
public class Main
{
static int len(int x){
if(x<10) return 1;
return len(x/10)+1;
}
// 取x的第k位数字
static int f(int x, int k){
if(len(x)-k==0) return x%10;
return ______________________; //填空
}
public static void main(String[] args)
{
int x = 23513;
//System.out.println(len(x));
System.out.println(f(x,3));
}
}
对于题目中的测试数据,应该打印5。
请仔细分析源码,并补充划线部分所缺少的代码。
注意:只提交缺失的代码,不要填写任何已有内容或说明性的文字。
public class Main
{
static int len(int x){
if(x<10) return 1;
return len(x/10)+1;
}
// 取x的第k位数字
static int f(int x, int k){
if(len(x)-k==0) return x%10;
return f(x/10,k); //填空
}
public static void main(String[] args)
{
int x = 23513;
//System.out.println(len(x));
System.out.println(f(x,3));
}
}
答案:f(x/10,k)
6.最大公共子串
最大公共子串长度问题就是:
求两个串的所有子串中能够匹配上的最大长度是多少。
比如:“abcdkkk” 和 “baabcdadabc”,
可以找到的最长的公共子串是"abcd",所以最大公共子串长度为4。
下面的程序是采用矩阵法进行求解的,这对串的规模不大的情况还是比较有效的解法。
请分析该解法的思路,并补全划线部分缺失的代码。
public class Main {
static int f(String s1, String s2) {
char[] c1 = s1.toCharArray();
char[] c2 = s2.toCharArray();
int[][] a = new int[c1.length + 1][c2.length + 1];
int max = 0;
for (int i = 1; i < a.length; i++) {
for (int j = 1; j < a[i].length; j++) {
if (c1[i - 1] == c2[j - 1]) {
a[i][j] = ____________; // 填空
if (a[i][j] > max)
max = a[i][j];
}
}
}
return max;
}
public static void main(String[] args) {
int n = f("abcdkkk", "baabcdadabc");
System.out.println(n);
}
}
public class Main {
static int f(String s1, String s2) {
char[] c1 = s1.toCharArray();
char[] c2 = s2.toCharArray();
int[][] a = new int[c1.length + 1][c2.length + 1];
int max = 0;
for (int i = 1; i < a.length; i++) {
for (int j = 1; j < a[i].length; j++) {
if (c1[i - 1] == c2[j - 1]) {
a[i][j] = a[i - 1][j - 1] + 1; // 填空
if (a[i][j] > max)
max = a[i][j];
}
}
}
return max;
}
public static void main(String[] args) {
int n = f("abcdkkk", "baabcdadabc");
System.out.println(n);
}
}
答案:a[i - 1][j - 1] + 1
7.日期问题
小明正在整理一批历史文献。这些历史文献中出现了很多日期。小明知道这些日期都在1960年1月1日至2059年12月31日。令小明头疼的是,这些日期采用的格式非常不统一,有采用年/月/日的,有采用月/日/年的,还有采用日/月/年的。更加麻烦的是,年份也都省略了前两位,使得文献上的一个日期,存在很多可能的日期与其对应。
比如02/03/04,可能是2002年03月04日、2004年02月03日或2004年03月02日。
给出一个文献上的日期,你能帮助小明判断有哪些可能的日期对其对应吗?
输入
----
一个日期,格式是"AA/BB/CC"。 (0 <= A, B, C <= 9)
输入
----
输出若干个不相同的日期,每个日期一行,格式是"yyyy-MM-dd"。多个日期按从早到晚排列。
样例输入
----
02/03/04
样例输出
----
2002-03-04
2004-02-03
2004-03-02
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
不要使用package语句。不要使用jdk1.7及以上版本的特性。
主类的名字必须是:Main,否则按无效代码处理。
import java.util.Arrays;
import java.util.Calendar;
import java.util.Scanner;
public class Main{
static boolean leap(int l)
{
if((l%4==0&&l%100!=0)||l%400==0)
return true;
return false;
}
public static void main(String[] args) {
Scanner in =new Scanner( System.in);
String s=in.nextLine();
int a=Integer.parseInt(s.substring(0, 2));
int b=Integer.parseInt(s.substring(3,5));
int c=Integer.parseInt(s.substring(6,8));
int[]z=new int[6];
z[0]=(2000+a)*10000+b*100+c;
z[1]=(1900+a)*10000+b*100+c;
z[2]=(2000+c)*10000+a*100+b;
z[3]=(2000+c)*10000+b*100+a;
z[4]=(1900+c)*10000+a*100+b;
z[5]=(1900+c)*10000+b*100+a;
int daycount[]={31,29,31,30,31,30,31,31,30,31,30,31};
Arrays.sort(z);
for(int i=0;i<6;i++)
{
int year=z[i]/10000;
int month=z[i]%10000/100;
int day=z[i]%100;
if(year<1960||year>2059)continue;
if(month<1||month>12)continue;
if(leap(year))daycount[1]=29;
else daycount[1]=28;
if(day<1||day>daycount[month-1])continue;
StringBuffer string=new StringBuffer(z[i]+"");
string.insert(4, '-');
string.insert(7, '-');
System.out.println(string);
}
}
}
8.包子凑数
小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子。每种蒸笼都有非常多笼,可以认为是无限笼。
每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有X个包子。比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,大叔就会选2笼3个的再加1笼5个的(也可能选出1笼3个的再加2笼4个的)。
当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有3种蒸笼,分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。
小明想知道一共有多少种数目是包子大叔凑不出来的。
输入
----
第一行包含一个整数N。(1 <= N <= 100)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100)
输出
----
一个整数代表答案。如果凑不出的数目有无限多个,输出INF。
例如,
输入:
2
4
5
程序应该输出:
6
再例如,
输入:
2
4
6
程序应该输出:
INF
样例解释:
对于样例1,凑不出的数目包括:1, 2, 3, 6, 7, 11。
对于样例2,所有奇数都凑不出来,所以有无限多个。
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
【解析】若每个抽屉的容量不互质,则不能表达的数有INF,若互质,则利用完全背包的思路解决,具体参看代码注释。
import java.util.Scanner;
public class Main{
public static void main(String[] args) {
Scanner sc =new Scanner(System.in);
int num = sc.nextInt();
int bao[] =new int[num];
int dp[]=new int[100*100+5];
for(int i=0;i<num;i++) {
bao[i]=sc.nextInt();
}
sc.close();
int g=bao[0];
for(int i=1;i<num;i++) {
g=gcd(g,bao[i]);
}
//如果两个数不互质,则表示不出的数有无限个
if(g != 1) {
System.out.println("INF");
return;
}
//bao[]数组的下标用来存放能凑出的包子数
dp[0]=1;
for(int i=0;i<num;i++) {
for(int j=0;j+bao[i]<100*100+5;j++) {
if(dp[j]==1) {//假设j==3,意思是三个包子能凑出来,3加任何容量的抽屉包子数都能凑出来
dp[j+bao[i]]=1;
}
}
}
//凑不出的包子数
int cnt=0;
for(int i=0;i<100*100+5;i++) {
if(dp[i]!=1) {
cnt++;
}
}
System.out.println(cnt);
}
//求最大公约数
private static int gcd(int i, int j) {
if(j==0) {
return i;
}
return gcd(j,i%j);
}
}
9.分巧克力
儿童节那天有 K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有 N块巧克力,其中第 i 块是 Hi×Wi的方格组成的长方形。
为了公平起见,小明需要从这 N块巧克力中切出 K块巧克力分给小朋友们。切出的巧克力需要满足:
1.形状是正方形,边长是整数
2.大小相同
例如一块 6×5的巧克力可以切出 6 块 2×2 的巧克力或者 2 块 3×3的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?
输入
第一行包含两个整数 N和 K以下 N行每行包含两个整数 Hi 和 Wi输入保证每位小朋友至少能获得一块 1×1的巧克力。
输出
输出切出的正方形巧克力最大可能的边长
数据范围
1≤N,K≤105
1≤Hi,Wi≤105
输入样例:
2 10
6 5
5 6
输出样例:
2
import java.util.Scanner;
public class Main{
public static void main(String[] args) {
Scanner input=new Scanner(System.in);
int N=input.nextInt();
int K=input.nextInt();
int l=1;
int r=100001;
int ck[][]=new int[N][2];
//N块分给十个人
for(int i=0;i<N;i++){
ck[i][0]=input.nextInt();
ck[i][1]=input.nextInt();
}
while (l<r){
int mid=(l+r+1)/2; //这里需要加1是因为,假设最后循环到l=r-1,
//只剩下两个数,mid=(l+r)/2的话,由于是向下取整
//所以l=mid,如果此时check(mid)==1,符合条件的话,就会产生死循环
if(check(ck,mid,N,K)==1){
l=mid;
}
else
r=mid-1;
}
System.out.println(l);
}
public static int check(int ck[][],int mid,int N,int K){
int m=0;
for(int i=0;i<N;i++){
m=m+(ck[i][0]/mid*ck[i][1]/mid);
if(m>=K){
return 1;
}
}
return 0;
}
}
10.k倍区间
给定一个长度为N的数列,A1, A2, … AN,如果其中一段连续的子序列Ai, Ai+1, … Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。
你能求出数列中总共有多少个K倍区间吗?
输入
-------
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)
输出
------
输出一个整数,代表K倍区间的数目。
例如.
输入:
5 2
1
2
3
4
5
输出:
6
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
int n, k;
long ans = 0;
Scanner sc = new Scanner(System.in);
n=sc.nextInt();
k=sc.nextInt();
int [] sum = new int [100001];
int [] num = new int [100001];
int [] cnt = new int [100001];
for(int i = 1; i <= n; i++){
num[i] = sc.nextInt();
sum[i] = (sum[i-1] + num[i])%k;
ans += cnt[sum[i]];
cnt[sum[i]]++;
}
long a = ans +(long)cnt[0];
System.out.println(a);
}
}