第八届蓝桥杯大赛个人赛省赛(软件类)真题-Java语言B组

目录

1.购物单

2.纸牌三角形

3.承压计算

4.魔方状态

5.取数位

6.最大公共子串

7.日期问题

8.包子凑数

9.分巧克力

10.k倍区间


1.购物单

小明刚刚找到工作,老板人很好,只是老板夫人很爱购物。老板忙的时候经常让小明帮忙到商场代为购物。小明很厌烦,但又不好推辞。

    这不,XX大促销又来了!老板夫人开出了长长的购物单,都是有打折优惠的。
    小明也有个怪癖,不到万不得已,从不刷卡,直接现金搞定。
    现在小明很心烦,请你帮他计算一下,需要从取款机上取多少现金,才能搞定这次购物。

    取款机只能提供100元面额的纸币。小明想尽可能少取些现金,够用就行了。
    你的任务是计算出,小明最少需要取多少现金。

以下是让人头疼的购物单,为了保护隐私,物品名称被隐藏了。
-----------------
****     180.90       88折
****      10.25       65折
****      56.14        9折
****     104.65        9折
****     100.30       88折
****     297.15        半价
****      26.75       65折
****     130.62        半价
****     240.28       58折
****     270.62        8折
****     115.87       88折
****     247.34       95折
****      73.21        9折
****     101.00        半价
****      79.54        半价
****     278.44        7折
****     199.26        半价
****      12.97        9折
****     166.30       78折
****     125.50       58折
****      84.98        9折
****     113.35       68折
****     166.57        半价
****      42.56        9折
****      81.90       95折
****     131.78        8折
****     255.89       78折
****     109.17        9折
****     146.69       68折
****     139.33       65折
****     141.16       78折
****     154.74        8折
****      59.42        8折
****      85.44       68折
****     293.70       88折
****     261.79       65折
****      11.30       88折
****     268.27       58折
****     128.29       88折
****     251.03        8折
****     208.39       75折
****     128.88       75折
****      62.06        9折
****     225.87       75折
****      12.89       75折
****      34.28       75折
****      62.16       58折
****     129.12        半价
****     218.37        半价
****     289.69        8折
--------------------

需要说明的是,88折指的是按标价的88%计算,而8折是按80%计算,余者类推。
特别地,半价是按50%计算。

请提交小明要从取款机上提取的金额,单位是元。
答案是一个整数,类似4300的样子,结尾必然是00,不要填写任何多余的内容。

【解析】直接将购物单复制到eclipse里 然后选中购物单内容按Ctrl+F 将****换成+,将“折”换成空格,“半折”换成*0.5,然后自己在数字前加*和小数点 

public class Main {
		public static void main(String[] args) {
			double sum =     180.90       *0.88 
					+      10.25       *0.65 
					+      56.14        *0.9 
					+     104.65        *0.9 
					+     100.30       *0.88 
					+     297.15        *0.5
					+      26.75       *0.65 
					+     130.62        *0.5
					+     240.28       *0.58 
					+     270.62        *0.8 
					+     115.87       *0.88 
					+     247.34       *0.95 
					+      73.21        *0.9 
					+     101.00        *0.5
					+      79.54        *0.5
					+     278.44        *0.7 
					+     199.26        *0.5
					+      12.97        *0.9 
					+     166.30       *0.78 
					+     125.50       *0.58 
					+      84.98        *0.9 
					+     113.35       *0.68 
					+     166.57        *0.5
					+      42.56        *0.9 
					+      81.90       *0.95 
					+     131.78        *0.8 
					+     255.89       *0.78 
					+     109.17        *0.9 
					+     146.69       *0.68 
					+     139.33       *0.65 
					+     141.16       *0.78 
					+     154.74        *0.8 
					+      59.42        *0.8 
					+      85.44       *0.68 
					+     293.70       *0.88 
					+     261.79       *0.65 
					+      11.30       *0.88 
					+     268.27       *0.58 
					+     128.29       *0.88 
					+     251.03        *0.8 
					+     208.39       *0.75 
					+     128.88       *0.75 
					+      62.06        *0.9 
					+     225.87       *0.75 
					+      12.89      *0.75 
					+      34.28       *0.75 
					+      62.16       *0.58 
					+     129.12        *0.5
					+     218.37        *0.5
					+     289.69        *0.8;
			System.out.println(sum);
		}
}

答案:5200 

2.纸牌三角形(全排列)

A,2,3,4,5,6,7,8,9 共9张纸牌排成一个正三角形(A按1计算)。要求每个边的和相等。
下图就是一种排法(如有对齐问题,参看p1.png)。

这样的排法可能会有很多。

如果考虑旋转、镜像后相同的算同一种,一共有多少种不同的排法呢?
请你计算并提交该数字。
注意:需要提交的是一个整数,不要提交任何多余内容。

【解析】可以用数组表示,分别表示为三条边     arr[1]+arr[2]+arr[3]+arr[4]
    arr[7]+arr[8]+arr[9]+arr[1]
    arr[4]+arr[5]+arr[6]+arr[7]
判断是否相等,注意镜像和旋转
所以总和要/6

public class Main{
	static int arr[]=new int[10];
	static boolean vis[]=new boolean[10];
	static int sum=0;
	static void dfs(int step) {
		if(step==10)
		{
			if(arr[1]+arr[2]+arr[3]+arr[4]==arr[4]+arr[5]+arr[6]+arr[7]&&
			arr[7]+arr[8]+arr[9]+arr[1]==arr[4]+arr[5]+arr[6]+arr[7])
				sum++;
			return;
		}
		for(int i=1;i<=9;i++)
		{
			if(!vis[i]) {
				vis[i]=true;
				arr[step]=i;
				dfs(step+1);
				vis[i]=false;
			}
		}
	}
	public static void main(String[] args) {
		dfs(1);
		System.out.println(sum/6);//这里其实是count/3/2,除以3是排除了旋转,除以2是排除了镜像
	}
}

 答案:144

3.承压计算

X星球的高科技实验室中整齐地堆放着某批珍贵金属原料。

每块金属原料的外形、尺寸完全一致,但重量不同。
金属材料被严格地堆放成金字塔形。

假设每块原料的重量都十分精确地平均落在下方的两个金属块上,
最后,所有的金属块的重量都严格精确地平分落在最底层的电子秤上。
电子秤的计量单位很小,所以显示的数字很大。

工作人员发现,其中读数最小的电子秤的示数为:2086458231
请你推算出:读数最大的电子秤的示数为多少?

注意:需要提交的是一个整数,不要提交任何多余内容。

                             7 
                            5 8 
                           7 8 8 
                          9 2 7 2 
                         8 1 4 9 1 
                        8 1 8 8 4 1 
                       7 9 6 1 4 5 4 
                      5 6 5 5 6 9 5 6 
                     5 5 4 7 9 3 5 5 1 
                    7 5 7 9 7 4 7 3 3 1 
                   4 6 4 5 5 8 8 3 2 4 3 
                  1 1 3 3 1 6 6 5 5 4 4 2 
                 9 9 9 2 1 9 1 9 2 9 5 7 9 
                4 3 3 7 7 9 3 6 1 3 8 8 3 7 
               3 6 8 1 5 3 9 5 8 3 8 1 8 3 3 
              8 3 2 3 3 5 5 8 5 4 2 8 6 7 6 9 
             8 1 8 1 8 4 6 2 2 1 7 9 4 2 3 3 4 
            2 8 4 2 2 9 9 2 8 3 4 9 6 3 9 4 6 9 
           7 9 7 4 9 7 6 6 2 8 9 4 1 8 1 7 2 1 6 
          9 2 8 6 4 2 7 9 5 4 1 2 5 1 7 3 9 8 3 3 
         5 2 1 6 7 9 3 2 8 9 5 5 6 6 6 2 1 8 7 9 9 
        6 7 1 8 8 7 5 3 6 5 4 7 3 4 6 7 8 1 3 2 7 4 
       2 2 6 3 5 3 4 9 2 4 5 7 6 6 3 2 7 2 4 8 5 5 4 
      7 4 4 5 8 3 3 8 1 8 6 3 2 1 6 2 6 4 6 3 8 2 9 6 
     1 2 4 1 3 3 5 3 4 9 6 3 8 6 5 9 1 5 3 2 6 8 8 5 3 
    2 2 7 9 3 3 2 8 6 9 8 4 4 9 5 8 2 6 3 4 8 4 9 3 8 8 
   7 7 7 9 7 5 2 7 9 2 5 1 9 2 6 5 3 9 3 5 7 3 5 4 2 8 9 
  7 7 6 6 8 7 5 5 8 2 4 7 7 4 7 2 6 9 2 1 8 2 9 8 5 7 3 6 
 5 9 4 5 5 7 5 5 6 3 5 3 9 5 8 9 5 4 1 2 6 1 4 3 5 3 2 4 1 
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
import java.util.Scanner;
public class Main{
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		double[][] a = new double[30][30];
		for (int i = 0; i < a.length-1; i++) {
			for (int j = 0; j <= i; j++) {
				a[i][j] = sc.nextInt();
			}
		}
		for (int i = 1; i < a.length; i++) {
			for (int j = 0; j <= i; j++) {
				if(j>0){
					a[i][j]+=(double)a[i-1][j-1]*1.0/2+(double)a[i-1][j]*1.0/2;
				}else if(j==0){
					a[i][j]+=(double)a[i-1][j]*1.0/2;
				}
			}
		}
		for (int i = 0; i < a.length; i++) {//给最后一行排下序
			for (int j = 0; j < a.length-1-i; j++) {
				if(a[29][j]>a[29][j+1]){
					double t = a[29][j];
					a[29][j] = a[29][j+1];
					a[29][j+1] = t;
				}
			}
		}
		System.out.println((double)2086458231*1.0*a[29][29]/a[29][0]);
	}
}
import java.util.*;
public class Main{
	static long[][] arr = new long[30][30];
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		long factor=1;//2的30次方
		for(int i = 0;i < 30;i++) {
			factor<<=1;
		}
		//输入数据放入二维数组
		for(int i = 0;i < 29;++i) {
			for(int j = 0;j <=i;++j) {
				long a=sc.nextLong();
				arr[i][j]=a*factor;//每个数都乘以factor
			}
		}
//自上而下处理a[i][j]*factor(2的30次方)-->除以2,计入a[i+1][j]和a[i+1][j+1]
//循环处理第1~N-1行
		for(int i = 0;i < 29;++i) {
			for(int j = 0;j <= i;++j) {
				long ha = arr[i][j]/2;
				arr[i+1][j]+=ha;
				arr[i+1][j+1]+=ha;
			}
		}
//对a[N-1]这一行进行排序,查看最小值与factor之间的倍数关系,决定最大值是多少
		Arrays.sort(arr[29]);
		System.out.println(arr[29][0]);
		System.out.println(arr[29][29]);
		System.out.println(arr[29][29]/(arr[29][0]/2086458231));
	}
}

答案:72665192664

4.魔方状态

二阶魔方就是只有2层的魔方,只由8个小块组成。
如图p1.png所示。

小明很淘气,他只喜欢3种颜色,所有把家里的二阶魔方重新涂了颜色,如下:

前面:橙色
右面:绿色
上面:黄色
左面:绿色
下面:橙色
后面:黄色

请你计算一下,这样的魔方被打乱后,一共有多少种不同的状态。

如果两个状态经过魔方的整体旋转后,各个面的颜色都一致,则认为是同一状态。

请提交表示状态数的整数,不要填写任何多余内容或说明文字。

import java.util.HashSet;
import java.util.Set;

public class Main {
  static char[][] start = {"oybbgb".toCharArray(),
      "oygbbb".toCharArray(),
      "bygbby".toCharArray(),
      "bybbgy".toCharArray(),
      "obbogb".toCharArray(),
      "obgobb".toCharArray(),
      "bbgoby".toCharArray(),
      "bbbogy".toCharArray()};
  static char[][][] q = new char[2000000][8][6];
  static HashSet<String> all_state = new HashSet<String>();
  static int  front, tail;
  static String to_string(char[][] a) {
    String ans = "";
    for (int i = 0; i < 8; ++i) {
      ans += new String(a[i]);
    }
    return ans; 
  }
 
  private static void swap(char[] a, int i, int j) {
    char t = a[i];
    a[i] = a[j];
    a[j] = t;
  }
 
  private static void swap(char[][] a, int i, int j) {
    char[] t = a[i];
    a[i] = a[j];
    a[j] = t;
  }
 
  //上层的块的旋转,面的相对位置调换
  static void ucell(char[] a) {
    swap(a, 0, 2);
    swap(a, 2, 5);
    swap(a, 5, 4);
  }
 
 
  //上层顺时针旋转
  static void u(char[][] s) {
    ucell(s[0]);
    ucell(s[1]);
    ucell(s[2]);
    ucell(s[3]);
//    块的相对位置调换
    swap(s, 1, 0);
    swap(s, 2, 1);
    swap(s, 3, 2);
 
  }
 
  //右层旋转是面的位置变化
  static void rcell(char[] a) {
    swap(a, 1, 0);
    swap(a, 0, 3);
    swap(a, 3, 5);
  }
 
  static void r(char[][] s)//魔方右层顺时针转
  {
    rcell(s[1]);
    rcell(s[2]);
    rcell(s[6]);
    rcell(s[5]);
//    块的位置变化
    swap(s, 2, 1);
    swap(s, 5, 1);
    swap(s, 6, 5);
  }
 
  static void fcell(char[] a) {
    swap(a, 2, 1);
    swap(a, 1, 4);
    swap(a, 4, 3);
  }
 
  static void f(char[][] s)//前面一层 顺时针转
  {
    fcell(s[0]);
    fcell(s[1]);
    fcell(s[4]);
    fcell(s[5]);
    swap(s, 1, 5);
    swap(s, 0, 1);
    swap(s, 4, 0);
  }
 
  static void uwhole(char[][] s)//整个魔方从顶部看 顺时针转 用于判重
  {
    u(s);//上层旋转
//    下层旋转
    ucell(s[4]);
    ucell(s[5]);
    ucell(s[6]);
    ucell(s[7]);
//    完成自旋后,块的位置变动
    swap(s, 5, 4);
    swap(s, 6, 5);
    swap(s, 7, 6);
  }
 
  static void fwhole(char[][] s)//整个魔方从前面看 顺时针转 用于判重
  {
    f(s);
    fcell(s[2]);
    fcell(s[6]);
    fcell(s[7]);
    fcell(s[3]);
    swap(s, 2, 6);
    swap(s, 3, 2);
    swap(s, 7, 3);
  }
 
  static void rwhole(char[][] s)//整个魔方从右边看 顺时针转 用于判重
  {
    r(s);
    rcell(s[0]);
    rcell(s[3]);
    rcell(s[4]);
    rcell(s[7]);
    swap(s, 3, 7);
    swap(s, 0, 3);
    swap(s, 4, 0);
  }
 
 
  static boolean try_insert(char[][] s) {
    char[][] k = new char[8][6];
    memcpy(k, s);
    for (int i = 0; i < 4; i++) {
      fwhole(k);
      for (int j = 0; j < 4; j++) {
        uwhole(k);
        for (int q = 0; q < 4; q++) {
          rwhole(k);
          if (all_state.contains(to_string(k))) {
            return false;
          }
        }
      }
    }
    all_state.add(to_string(k));
    return true;
 
  }
 
  private static void memcpy(char[][] k, char[][] s) {
    for (int i = 0; i < 8; i++) {
      for (int j = 0; j < 6; j++) {
        k[i][j] = s[i][j];
      }
    }
  }
 
  static void solve() {
    front = 0;
    tail = 1;
    all_state.add(to_string(start));
    memcpy(q[front], start);//填充q[0],相当于第一个状态入队列
    while (front < tail) {
        /*将其所有变形,尝试加入set中*/
      memcpy(q[tail], q[front]);//拷贝到tail
      u(q[tail]);//上层顺时针旋转
      if (try_insert(q[tail])) {
        tail++;//扩展队列
      }
      memcpy(q[tail], q[front]);//拷贝到tail
      r(q[tail]);//右层顺时针旋转
      if (try_insert(q[tail])) {
        tail++;//扩展队列
      }
      memcpy(q[tail], q[front]);//拷贝到tail
      f(q[tail]);//前顺时针旋转
      if (try_insert(q[tail])) {
        tail++;//扩展队列
      }
      front++;//弹出队首
//        cout << front << " " << tail << endl;
    }
 
    System.out.println(front);
  }
 
  public static void main(String[] args) {
    solve();
  }
}

 答案:229878

5.取数位

求1个整数的第k位数字有很多种方法。
以下的方法就是一种。

public class Main
{
    static int len(int x){
        if(x<10) return 1;
        return len(x/10)+1;
    }
    
    // 取x的第k位数字
    static int f(int x, int k){
        if(len(x)-k==0) return x%10;
        return ______________________;  //填空
    }
    
    public static void main(String[] args)
    {
        int x = 23513;
        //System.out.println(len(x));
        System.out.println(f(x,3));
    }
}

对于题目中的测试数据,应该打印5。

请仔细分析源码,并补充划线部分所缺少的代码。

注意:只提交缺失的代码,不要填写任何已有内容或说明性的文字。

public class Main
{
    static int len(int x){
        if(x<10) return 1;
        return len(x/10)+1;
    }
    
    // 取x的第k位数字
    static int f(int x, int k){
        if(len(x)-k==0) return x%10;
        return f(x/10,k);  //填空
    }
    
    public static void main(String[] args)
    {
        int x = 23513;
        //System.out.println(len(x));
        System.out.println(f(x,3));
    }
}

答案:f(x/10,k)

6.最大公共子串

最大公共子串长度问题就是:

求两个串的所有子串中能够匹配上的最大长度是多少。

比如:“abcdkkk” 和 “baabcdadabc”,
可以找到的最长的公共子串是"abcd",所以最大公共子串长度为4。

下面的程序是采用矩阵法进行求解的,这对串的规模不大的情况还是比较有效的解法。

请分析该解法的思路,并补全划线部分缺失的代码。

public class Main {
	static int f(String s1, String s2) {
		char[] c1 = s1.toCharArray();
		char[] c2 = s2.toCharArray();

		int[][] a = new int[c1.length + 1][c2.length + 1];

		int max = 0;
		for (int i = 1; i < a.length; i++) {
			for (int j = 1; j < a[i].length; j++) {
				if (c1[i - 1] == c2[j - 1]) {
					a[i][j] = ____________;      // 填空
					if (a[i][j] > max)
						max = a[i][j];
				}
			}
		}

		return max;
	}

	public static void main(String[] args) {
		int n = f("abcdkkk", "baabcdadabc");
		System.out.println(n);
	}
}
public class Main {
	static int f(String s1, String s2) {
		char[] c1 = s1.toCharArray();
		char[] c2 = s2.toCharArray();

		int[][] a = new int[c1.length + 1][c2.length + 1];

		int max = 0;
		for (int i = 1; i < a.length; i++) {
			for (int j = 1; j < a[i].length; j++) {
				if (c1[i - 1] == c2[j - 1]) {
					a[i][j] = a[i - 1][j - 1] + 1;      // 填空
					if (a[i][j] > max)
						max = a[i][j];
				}
			}
		}

		return max;
	}

	public static void main(String[] args) {
		int n = f("abcdkkk", "baabcdadabc");
		System.out.println(n);
	}
}

答案:a[i - 1][j - 1] + 1

7.日期问题

小明正在整理一批历史文献。这些历史文献中出现了很多日期。小明知道这些日期都在1960年1月1日至2059年12月31日。令小明头疼的是,这些日期采用的格式非常不统一,有采用年/月/日的,有采用月/日/年的,还有采用日/月/年的。更加麻烦的是,年份也都省略了前两位,使得文献上的一个日期,存在很多可能的日期与其对应。  
比如02/03/04,可能是2002年03月04日、2004年02月03日或2004年03月02日。  
给出一个文献上的日期,你能帮助小明判断有哪些可能的日期对其对应吗?
输入
----
一个日期,格式是"AA/BB/CC"。  (0 <= A, B, C <= 9)  
输入
----
输出若干个不相同的日期,每个日期一行,格式是"yyyy-MM-dd"。多个日期按从早到晚排列。  
样例输入
----
02/03/04  
样例输出
----
2002-03-04  
2004-02-03  
2004-03-02  
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗  < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
不要使用package语句。不要使用jdk1.7及以上版本的特性。
主类的名字必须是:Main,否则按无效代码处理。

import java.util.Arrays;
import java.util.Calendar;
import java.util.Scanner;
 
public class Main{
	static boolean leap(int l)
	{
		if((l%4==0&&l%100!=0)||l%400==0)
			return true;
		return false;
	}
	public static void main(String[] args) {
		Scanner in =new Scanner( System.in);
		String s=in.nextLine();
		int a=Integer.parseInt(s.substring(0, 2));
		int b=Integer.parseInt(s.substring(3,5));
		int c=Integer.parseInt(s.substring(6,8));
		int[]z=new int[6];
		z[0]=(2000+a)*10000+b*100+c;
		z[1]=(1900+a)*10000+b*100+c;
		z[2]=(2000+c)*10000+a*100+b;
		z[3]=(2000+c)*10000+b*100+a;
		z[4]=(1900+c)*10000+a*100+b;
		z[5]=(1900+c)*10000+b*100+a;
		int daycount[]={31,29,31,30,31,30,31,31,30,31,30,31};
		Arrays.sort(z);
		for(int i=0;i<6;i++)
		{
			int year=z[i]/10000;
			int month=z[i]%10000/100;
			int day=z[i]%100;
			if(year<1960||year>2059)continue;
			if(month<1||month>12)continue;
			if(leap(year))daycount[1]=29;
			else daycount[1]=28;
			if(day<1||day>daycount[month-1])continue;
			StringBuffer string=new StringBuffer(z[i]+"");
			string.insert(4, '-');
			string.insert(7, '-');
			System.out.println(string);
			
		}
	}
}

8.包子凑数

小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子。每种蒸笼都有非常多笼,可以认为是无限笼。

每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有X个包子。比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,大叔就会选2笼3个的再加1笼5个的(也可能选出1笼3个的再加2笼4个的)。

当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有3种蒸笼,分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。

小明想知道一共有多少种数目是包子大叔凑不出来的。

输入
----
第一行包含一个整数N。(1 <= N <= 100)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100)  

输出
----
一个整数代表答案。如果凑不出的数目有无限多个,输出INF。

例如,
输入:
2  
4  
5   

程序应该输出:
6  

再例如,
输入:
2  
4  
6    

程序应该输出:
INF

样例解释:
对于样例1,凑不出的数目包括:1, 2, 3, 6, 7, 11。  
对于样例2,所有奇数都凑不出来,所以有无限多个。  

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗  < 1000ms

【解析】若每个抽屉的容量不互质,则不能表达的数有INF,若互质,则利用完全背包的思路解决,具体参看代码注释。

import java.util.Scanner;
public class Main{
	public static void main(String[] args) {
		Scanner sc =new Scanner(System.in);
		int num = sc.nextInt();
		int bao[] =new int[num];
		int dp[]=new int[100*100+5];
		for(int i=0;i<num;i++) {
			bao[i]=sc.nextInt();
		}
		sc.close();
		int g=bao[0];
   
		for(int i=1;i<num;i++) {
			g=gcd(g,bao[i]);
		}
		//如果两个数不互质,则表示不出的数有无限个
		if(g != 1) {
			System.out.println("INF");
			return;
		}
		//bao[]数组的下标用来存放能凑出的包子数
		dp[0]=1;
		for(int i=0;i<num;i++) {
			for(int j=0;j+bao[i]<100*100+5;j++) {
				if(dp[j]==1) {//假设j==3,意思是三个包子能凑出来,3加任何容量的抽屉包子数都能凑出来
					dp[j+bao[i]]=1;
				}
			}
		}
		//凑不出的包子数
		int cnt=0;
		for(int i=0;i<100*100+5;i++) {
			if(dp[i]!=1) {
				cnt++;
			}
		}
		System.out.println(cnt);
		}
	
	//求最大公约数
		private static int gcd(int i, int j) {
			if(j==0) {
				return i;
			}
			return gcd(j,i%j);
		}
}

9.分巧克力

儿童节那天有 K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。

小明一共有 N块巧克力,其中第 i 块是 Hi×Wi的方格组成的长方形。

为了公平起见,小明需要从这 N块巧克力中切出 K块巧克力分给小朋友们。切出的巧克力需要满足:

1.形状是正方形,边长是整数
2.大小相同

例如一块 6×5的巧克力可以切出 6 块 2×2 的巧克力或者 2 块 3×3的巧克力。

当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?
输入

第一行包含两个整数 N和 K以下 N行每行包含两个整数 Hi 和 Wi输入保证每位小朋友至少能获得一块 1×1的巧克力。
输出

输出切出的正方形巧克力最大可能的边长

数据范围

1≤N,K≤105

1≤Hi,Wi≤105
输入样例:

2 10
6 5
5 6
输出样例:

2

import java.util.Scanner;
public class Main{
    public static void main(String[] args) {
        Scanner input=new Scanner(System.in);
        int N=input.nextInt();
        int K=input.nextInt();
        int l=1;
        int r=100001;
        int ck[][]=new int[N][2];
        //N块分给十个人
        for(int i=0;i<N;i++){
            ck[i][0]=input.nextInt();
            ck[i][1]=input.nextInt();
        }

        while (l<r){
            int mid=(l+r+1)/2; //这里需要加1是因为,假设最后循环到l=r-1,
           //只剩下两个数,mid=(l+r)/2的话,由于是向下取整
           //所以l=mid,如果此时check(mid)==1,符合条件的话,就会产生死循环

            if(check(ck,mid,N,K)==1){
                l=mid;
            }
            else
                r=mid-1;
        }
        System.out.println(l);
    }
    public static int check(int ck[][],int mid,int N,int K){
        int m=0;
        for(int i=0;i<N;i++){
            m=m+(ck[i][0]/mid*ck[i][1]/mid);
            if(m>=K){
                return 1;
            }
        }
        return 0;
    }
}

10.k倍区间

给定一个长度为N的数列,A1, A2, … AN,如果其中一段连续的子序列Ai, Ai+1, … Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。

你能求出数列中总共有多少个K倍区间吗?
输入

-------
  第一行包含两个整数N和K。(1 <= N, K <= 100000)
  以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)
输出

------
  输出一个整数,代表K倍区间的数目。
例如.

输入:
5 2
1
2
3
4
5
输出:
6

import java.util.Scanner;
public class Main {
	public static void main(String[] args) {
		int n, k;
		long ans = 0;
		Scanner sc = new Scanner(System.in);
		n=sc.nextInt();
		k=sc.nextInt();
		int [] sum = new int [100001];
		int [] num = new int [100001];
		int [] cnt = new int [100001];
		for(int i = 1; i <= n; i++){
			num[i] = sc.nextInt();
			sum[i] = (sum[i-1] + num[i])%k;
			ans += cnt[sum[i]];
			cnt[sum[i]]++;
		}
		long a = ans +(long)cnt[0];
		System.out.println(a);
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一条小橘猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值