1217:棋盘问题

1217:棋盘问题
经典搜索问题
时间限制: 1000 ms 内存限制: 65536 KB
提交数: 8752 通过数: 4145
【题目描述】
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放 k 个棋子的所有可行的摆放方案 C。

【输入】
输入含有多组测试数据。

每组数据的第一行是两个正整数n,k,用一个空格隔开,表示了将在一个n×n的矩阵内描述棋盘,以及摆放棋子的数目。 (n≤8,k≤n)
当为−1−1时表示输入结束。

随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域,. 表示空白区域(数据保证不出现多余的空白行或者空白列)。

【输出】
对于每一组数据,给出一行输出,输出摆放的方案数目C(数据保证C<231)。

【输入样例】
2 1
#.
.#
4 4
…#
…#.
.#…
#…
-1 -1
【输出样例】
2
1

思路:

1.每一行可能有摆放位置也可能没有摆放位置;
2.每一行只能放一个棋子;
核心代码两个事例;

char G[maxn][maxn];//图
int dis[maxn];//dfs[i]:表示第i行选择的空位
int n,k;//n:棋盘大小,K:棋子个数;
long long sum = 0;//sum:摆放总数
int shu[maxn];
void search(int row,int y) {
	if (y== k&&row<=n+1) {
		sum++;
		return;
	}
	else if (row > n)return;
	for (int col = 1; col <= n; col++) {//搜索当前行是否有排放位置
		if (shu[col] == 0 && G[row][col] == '#') {
			shu[col] = 1;
			dis[row] = col;
			search(row + 1,y+1);
			shu[col] = 0;
		}
	}
	search(row + 1, y);//这一列没有进入下一列
}
void dfs(int x, int y)//x:行,y:摆放棋子的个数和
{
	if (y == k)
	{
		sum++;
		return;
	}
	for (int i = x; i <= n; i++)
		for (int j = 1; j <= n; j++)
			if (G[i][j] == '#' && shu[j]==0)
			{
				shu[j] = 1;
				dfs(i + 1, y + 1);
				shu[j] = 0;
			}
	return;
}
int main() {
	while (scanf_s("%d%d", &n, &k) != EOF) {
		if (n == -1 && k == -1)
			break;
		//init:G,dis,n,k,sum
		sum = 0;
		for (int i = 1; i <= n; i++) {
			dis[i] = 0; shu[i] = 0;
			for (int j = 1; j <= n; j++) {
				cin >> G[i][j];
			}
		}
		search(1, 0);
		/*
		//或者
		dfs(1,0);
		*/
		printf("%lld\n", sum);
	}
	return 0;
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值