leetcode74. 搜索二维矩阵

本文介绍了一种高效的算法,用于判断在特定条件下mxn矩阵中是否存在目标值。矩阵的特性包括每行元素升序排列且每行首元素大于前一行末元素。提供了两种实现方式:一种通过先定位可能的行再进行二分查找;另一种则将整个矩阵视为一维数组进行查找。
摘要由CSDN通过智能技术生成

题目在这里

编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:

每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。

示例 1:

输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
输出:true
示例 2:

输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
输出:false

提示:

m == matrix.length
n == matrix[i].length
1 <= m, n <= 100
-104 <= matrix[i][j], target <= 104

class Solution {
public:
    int findRow(vector<vector<int>>& matrix, int target){
        int st=0;
        int end=matrix.size()-1;
        int mid=(st+end)/2;//下取整,会等于st
        //在区间内成立
        while(st<mid){
            if(matrix[mid][0]>target){
                end=mid-1; //前面判断是否可以-1
            }
            else{
                st=mid;
            }
            mid=(st+end)/2;
        } //限制在两行内了,以上
        if(mid+1>=matrix.size()){ //独立元素成立,
            return mid;
        }
        else if(target<matrix[mid+1][0]){//判断前一行后一行
            return mid;
        }
        else{
            return mid+1;
        }

    }
    int binarySearch(vector<int>& A,int target){
        int st=0,end=A.size()-1;
        int mid=(st+end)/2;
        while(st<=end){
            if(A[mid]==target){
                return mid;
            }
            else if(A[mid]<target){   ///
                st=mid+1;
            }                         //这块之前上下写反了    
            else{
                end=mid-1;           ///
            }
            mid=(st+end)/2;
        }
        return -1;
    }
    bool searchMatrix(vector<vector<int>>& matrix, int target) {
        if(target<matrix[0][0]||matrix[matrix.size()-1][matrix[0].size()-1]<target){
            return false;
        }
        else{
            int row=findRow(matrix,target);
            return binarySearch(matrix[row],target)==-1?false:true;
        }

    }
};

思路二:
一次二分查找,看成是个序列,然后计算标号

class Solution {
public:
    bool searchMatrix(vector<vector<int>>& matrix, int target) {
        int m = matrix.size(), n = matrix[0].size();
        int low = 0, high = m * n - 1;
        while (low <= high) {
            int mid = (high - low) / 2 + low;
            int x = matrix[mid / n][mid % n];
            if (x < target) {
                low = mid + 1;
            } else if (x > target) {
                high = mid - 1;
            } else {
                return true;
            }
        }
        return false;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值