一:理论部分
给定一个样本集,每个样本点有两个维度值(X1,X2)和一个类别值,类别只有两类,我们以0和1代表。数据如下所示:
样本 |
X1 |
X2 |
类别 |
1 |
-1.4 |
4.7 |
1 |
2 |
-2.5 |
6.9 |
0 |
... |
... |
... |
... |
机器学习的任务是找一个函数,给定一个数据两个维度的值,该函数能够预测其属于类别1的概率。
假设这个函数的模样如下:
h(x) =sigmoid(z)
z = w0 +w1*X1+w2*X2
问题转化成了,根据现有的样本数据,找出最佳的参数w(w0,w1,w2)的值
为进一步简化问题,我们假设样本集只有上表中的两个。
假设现在手上已经有一个wt,也就是有了一个函数h(x),那么我们可以把样本1和样本2的数据代进去,看看这个函数的预测效果如何,假设样本1的预测值是p1 = 0.8,样本2的预测值是:p2 = 0.4。
函数在样本1上犯的错误为e1=(1-0.8)= 0.2,在样本2上犯的错误为e2=(0-0.4)= -0.4,总的错误E为-0.20(e1+e2)。如下表所示:
样本 |
X1 |