基于深度学习的车辆变道轨迹预测?

minADE_6: 0.66574
minFDE_6: 0.95184
MR_6: 0.08421
p-minADE_6: 2.37103
p-minFDE_6: 2.65714
p-MR_6: 0.76705
brier-minADE_6: 1.27096
brier-minFDE_6: 1.55707
minADE_1: 1.26057
minFDE_1: 2.73276
MR_1: 0.45083
p-minADE_1: 1.26057
p-minFDE_1: 2.73276
p-MR_1: 0.45083
brier-minADE_1: 1.26057
brier-minFDE_1: 2.73276
ADE: 2.24193
DE@1: 1.09941
DE@2: 2.83464
DE@3: 5.29454

以上是ADAPT: Efficient Multi-Agent Trajectory Prediction with Adaptation这篇论文中,给的预期结果,但是一般的轨迹预测模型不是给的是minADE,minFDE,MR这三个指标嘛,

请问这三个指标怎么选择?

同时,minADE_6和minADE_1、p-minADE_1分别是什么意思? 求解答。

文章参考: 【2023ICCV-轨迹预测paper】ADAPT: Efficient Multi-Agent Trajectory Prediction with Adaptation - 知乎 代码参考: gorkaydemir/ADAPT: [ICCV 2023] ADAPT: Efficient Multi-Agent Trajectory Prediction with Adaptation

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值