MySQL性能优化2-MySQL体系结构、存储引擎、查询机制

目录

 

MySQL体系结构

各大存储引擎

存储引擎介绍

CSV存储引擎

archive存储引擎

Memory存储引擎

MyISAM

InnoDB

查询机制

查询执行的路径

mysql 客户端/服务端通信

通讯方式

查询状态

查询缓存

查询缓存的相关设置

不会缓存的情况

为什么mysql默认关闭了缓存开启??

查询缓存使用场景

查询优化处理

查询优化处理的三个阶段

查询优化器如何找到最优执行计划

查询优化-执行计划

查询执行引擎

返回客户端

如何定位慢SQL

慢查询日志配置

慢查询日志分析

慢查询日志分析工具


MySQL体系结构

  • Client Connectors:接入方,支持协议很多(客户端连接)
  •  
  • Management Serveices & Utilities:系统管理和控制工具,mysqldump、 mysql复制集群、分区管理等
  • Connection Pool:连接池:管理缓冲用户连接、用户名、密码、权限校验、线程处理等需要缓存的需求
  • SQL Interface:SQL接口:接受用户的SQL命令,并且返回用户需要查询的结果
  • Parser:解析器,SQL命令传递到解析器的时候会被解析器验证和解析。解析器是由Lex和YACC实现的
  • Optimizer:查询优化器,SQL语句在查询之前会使用查询优化器对查询进行优化
  • Cache和Buffer(高速缓存区):查询缓存,如果查询缓存有命中的查询结果,查询语句就可以直接去查询缓存中取数据
  • pluggable storage Engines:插件式存储引擎。存储引擎是MySql中具体的与文件打交道的子系统
  • file system:文件系统,数据、日志(redo,undo)、索引、错误日志、查询记录、慢查询等

各大存储引擎

  • 存储引擎介绍

  1. 插拔式的插件方式
  2. 存储引擎是指定在表之上的,即一个库中的每一个表都可以指定专用的存储引擎
  3. 不管采用什么存储引擎,都会在数据区产生一个对应的frm文件(表结构定义描述文件)
  • CSV存储引擎

数据存储为CSV文件

  • 特点

不能定义没有索引、列定义必须为NOT NULL、不能设置自增列->不适合大表或大数据的在线处理

CSV数据的存储用,隔开,可直接编辑CSV文件进行数据的编排->数据安全性低

注:编辑之后,要生效使用flush table xxx命令

  • 应用场景

数据的快速导入到处

表格直接转换成CSV

  • archive存储引擎

压缩协议进行数据的存储

  • 特点

只支持insert和select两种操作

只允许自增ID列建立索引

行级锁

不支持事务

数据占用磁盘少

  • 应用场景

日志系统

大量的设备数据采集

  • Memory存储引擎

数据都是存储在内存中,IO效率要比其他引擎高很多 服务重启数据丢失,内存数据表默认只有16M

  • 特点

支持hash索引,B tree索引,默认hash(查找复杂度0(1))

字段长度都是固定长度varchar(32)=char(32)

不支持大数据存储类型字段如 blog,text

表级锁

  • 应用场景

等值查找热度较高数据

查询结果内存中的计算,大多数都是采用这种存储引擎 作为临时表存储需计算的数据(临时表)

  • MyISAM

Mysql5.5版本之前的默认存储引擎

较多的系统表也还是使用这个存储引擎

系统临时表也会用到Myisam存储引擎

  • 特点

a,select count(*) from table 无需进行数据的扫描

b,数据(MYD)和索引(MYI)分开存储

c,表级锁

d,不支持事务

  • InnoDB

Mysql5.5及以后版本的默认存储引擎

  • 特点

事务ACID

行级锁

聚簇索引(主键索引)方式进行数据存储

支持外键关系保证数据完整性

查询机制

  • 查询执行的路径

五个步骤:

  1. mysql 客户端/服务端通信
  2. 查询缓存
  3. 查询优化处理
  4. 查询执行引擎
  5. 返回客户端
  • mysql 客户端/服务端通信

通讯方式

Mysql客户端与服务端的通信方式是“半双工” ;

全双工:双向通信,发送同时也可以接收

半双工:双向通信,同时只能接收或者是发送,无法同时做操作

单工:只能单一方向传送

半双工通信: 在任何一个时刻,要么是有服务器向客户端发送数据,要么是客户端向服务端发 送数据,这两个动作不能同时发生。所以我们无法也无需将一个消息切成小块进行传输

特点和限制: 客户端一旦开始发送消息,另一端要接收完整个消息才能响应。

客户端一旦开始接收数据没法停下来发送指令。

查询状态

对于一个mysql连接,或者说一个线程,时刻都有一个状态来标识这个连接正在做什么

查看命令 show full processlist / show processlist

Sleep 线程正在等待客户端发送数据

Query 连接线程正在执行查询

Locked 线程正在等待表锁的释放

Sorting result 线程正在对结果进行排序

Sending data 向请求端返回数据

可通过kill {id}的方式进行连接的杀掉

  • 查询缓存

工作原理:缓存SELECT操作的结果集和SQL语句;新的SELECT语句,先去查询缓存,判断是否存在可用的记录集;

判断标准:与缓存的SQL语句,是否完全一样,区分大小写 (简单认为存储了一个key-value结构,key为sql,value为sql查询结果集)

查询缓存的相关设置

query_cache_type

值:0 -– 不启用查询缓存,默认值;

值:1 -– 启用查询缓存,只要符合查询缓存的要求,客户端的查询语句和记录集 都可以缓存起来,供其他客户端使用,加上 SQL_NO_CACHE将不缓存

值:2 -– 启用查询缓存,只要查询语句中添加了参数:SQL_CACHE,且符合查询 缓存的要求,客户端的查询语句和记录集,则可以缓存起来,供其他客户端使用

query_cache_size

允许设置query_cache_size的值最小为40K,默认1M,推荐设置 为:64M/128M;

query_cache_limit

限制查询缓存区最大能缓存的查询记录集,默认设置为1M

show status like 'Qcache%' 命令可查看缓存情况

不会缓存的情况

  1. 当查询语句中有一些不确定的数据时,则不会被缓存。如包含函数NOW(), CURRENT_DATE()等类似的函数,或者用户自定义的函数,存储函数,用户变 量等都不会被缓存
  2. 当查询的结果大于query_cache_limit设置的值时,结果不会被缓存
  3. 对于InnoDB引擎来说,当一个语句在事务中修改了某个表,那么在这个事务 提交之前,所有与这个表相关的查询都无法被缓存。因此长时间执行事务, 会大大降低缓存命中率
  4. 查询的表是系统表
  5. 查询语句不涉及到表

为什么mysql默认关闭了缓存开启??

  1. 在查询之前必须先检查是否命中缓存,浪费计算资源
  2. 如果这个查询可以被缓存,那么执行完成后,MySQL发现查询缓存中没有这 个查询,则会将结果存入查询缓存,这会带来额外的系统消耗
  3. .针对表进行写入或更新数据时,将对应表的所有缓存都设置失效。
  4. .如果查询缓存很大或者碎片很多时,这个操作可能带来很大的系统消耗

查询缓存使用场景

以读为主的业务,数据生成之后就不常改变的业务

比如门户类、新闻类、报表类、论坛类等

  • 查询优化处理

优化包括重写查询决定表的读取顺序、以及选择合适的索引

查询优化处理的三个阶段

  • 解析sql

通过lex词法分析,yacc语法分析将sql语句解析成解析树 https://www.ibm.com/developerworks/cn/linux/sdk/lex/

  • 预处理阶段

根据mysql的语法的规则进一步检查解析树的合法性,如:检查数据的表 和列是否存在,解析名字和别名的设置。还会进行权限的验证

  • 查询优化器

优化器的主要作用就是找到最优的执行计划

查询优化器如何找到最优执行计划

  • 使用等价变化原则

5 = 5 and a > 5 改写成 a > 5

a < b and a = 5 改写成 b > 5 and a = 5

基于联合索引,调整条件位置等

  • 优化count 、min、max等函数

min函数只需找索引最左边

max函数只需找索引最右边

myisam引擎count(*)

  • 覆盖索引扫描
  • 子查询优化
  • 提前终止查询

用了limit关键字或者使用不存在的条件

  • IN的优化

先进行排序,再采用二分查找的方式

Mysql的查询优化器是基于成本计算的原则。他会尝试各种执行计划。 数据抽样的方式进行试验(随机的读取一个4K的数据块进行分析)

查询优化-执行计划

  • 执行计划-id
  1. id相同,执行顺序由上至下
  2. id不同,如果是子查询,id的序号会递增,id值越大优先级越高,越先被执行
  3. id相同又不同即两种情况同时存在,id如果相同,可以认为是一组,从上往下顺序 执行;在所有组中,id值越大,优先级越高,越先执行
  • 执行计划-select_type

查询的类型,主要是用于区分普通查询、联合查询、子查询等

  1. SIMPLE:简单的select查询,查询中不包含子查询或者union
  2. PRIMARY:查询中包含子部分,最外层查询则被标记为primary
  3. SUBQUERY/MATERIALIZED:SUBQUERY表示在select 或 where列表中包含了子查询 MATERIALIZED表示where 后面in条件的子查询
  4. UNION:若第二个select出现在union之后,则被标记为union;
  5. UNION RESULT:从union表获取结果的select
  • 执行计划-table

查询涉及到的表,直接显示表名或者表的别名

<unionM,N>由ID为M,N 查询union产生的结果

<subqueryN>由ID为N查询生产的结果

  • 执行计划-type

访问类型,sql查询优化中一个很重要的指标,结果值从好到坏依次是: system > const > eq_ref > ref > range > index > ALL

system:表只有一行记录(等于系统表),const类型的特例,基本不会出现,可以忽略不计

const:表示通过索引一次就找到了,const用于比较primary key 或者 unique索引

eq_ref:唯一索引扫描,对于每个索引键,表中只有一条记录与之匹配。常见于主键 或 唯一索引扫描

ref:非唯一性索引扫描,返回匹配某个单独值的所有行,本质是也是一种索引访问

range:只检索给定范围的行,使用一个索引来选择行

index:Full Index Scan,索引全表扫描,把索引从头到尾扫一遍

ALL:Full Table Scan,遍历全表以找到匹配的行

  • 执行计划-possible_keys、keys、rows、filtered
  1. possible_keys:查询过程中有可能用到的索引
  2. key:实际使用的索引,如果为NULL,则没有使用索引
  3. rows:根据表统计信息或者索引选用情况,大致估算出找到所需的记录所需要读取的行 数
  4. filtered:它指返回结果的行占需要读到的行(rows列的值)的百分比 表示返回结果的行数占需读取行数的百分比,filtered的值越大越好
  • 执行计划-extra

十分重要的额外信息

  1. Using filesort :mysql对数据使用一个外部的文件内容进行了排序,而不是按照表内的索引进行排序读取(用到临时表)
  2. Using temporary: 使用临时表保存中间结果,也就是说mysql在对查询结果排序时使用了临时表,常见于order by 或 group by
  3. Using index: 表示相应的select操作中使用了覆盖索引(Covering Index),避免了访问表的数据行,效率高
  4. Using where : 使用了where过滤条件
  5. select tables optimized away: 基于索引优化MIN/MAX操作或者MyISAM存储引擎优化COUNT(*)操作,不必等到执行阶段在进行计算,查询执行 计划生成的阶段即可完成优化
  • 查询执行引擎

调用插件式的存储引擎的原子API的功能进行执行计划的执行

  • 返回客户端

  1. 有需要做缓存的,执行缓存操作
  2. 增量的返回结果: 开始生成第一条结果时,mysql就开始往请求方逐步返回数据

好处: mysql服务器无须保存过多的数据,浪费内存 用户体验好,马上就拿到了数据

  • 如何定位慢SQL

  1. 业务驱动
  2. 测试驱动
  3. 慢查询日志

慢查询日志配置

show variables like 'slow_query_log'

set global slow_query_log = on

set global slow_query_log_file = '/var/lib/mysql/gupaoedu-slow.log'

set global log_queries_not_using_indexes = on

set global long_query_time = 0.1 (秒)

慢查询日志分析

Time :日志记录的时间

User@Host:执行的用户及主机

Query_time:查询耗费时间 Lock_time 锁表时间 Rows_sent 发送给请求方的记录 条数 Rows_examined 语句扫描的记录条数 SET timestamp 语句执行的时间点

select .... 执行的具体语句

慢查询日志分析工具

mysqldumpslow -t 10 -s at /var/lib/mysql/gupaoedu-slow.log

其他工具 mysqlsla

pt-query-digest

发布了49 篇原创文章 · 获赞 3 · 访问量 4169
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览