一个人的旅行Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 22020 Accepted Submission(s): 7632
Problem Description
虽然草儿是个路痴(就是在杭电待了一年多,居然还会在校园里迷路的人,汗~),但是草儿仍然很喜欢旅行,因为在旅途中 会遇见很多人(白马王子,^0^),很多事,还能丰富自己的阅历,还可以看美丽的风景……草儿想去很多地方,她想要去东京铁塔看夜景,去威尼斯看电影,去阳明山上看海芋,去纽约纯粹看雪景,去巴黎喝咖啡写信,去北京探望孟姜女……眼看寒假就快到了,这么一大段时间,可不能浪费啊,一定要给自己好好的放个假,可是也不能荒废了训练啊,所以草儿决定在要在最短的时间去一个自己想去的地方!因为草儿的家在一个小镇上,没有火车经过,所以她只能去邻近的城市坐火车(好可怜啊~)。
Input
输入数据有多组,每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个,草儿想去的地方有D个;
接着有T行,每行有三个整数a,b,time,表示a,b城市之间的车程是time小时;(1=<(a,b)<=1000;a,b 之间可能有多条路) 接着的第T+1行有S个数,表示和草儿家相连的城市; 接着的第T+2行有D个数,表示草儿想去地方。
Output
输出草儿能去某个喜欢的城市的最短时间。
Sample Input
Sample Output
|
其实以前就已经写过了,但是没有注意这题a,b之间可以有多条路,也就是说需要做一个简单的处理,取最短的路径,如果不做处理的话,就直接是覆盖了,所以以前一直是WA,今天认真看了一下题目才发现这题的“玄机”。
其他的就没有什么难点了,因为是1000的数据量,用floyd(O(n3))担心会TLE,但是网上好像也有人用的floyd,不过用Dijkstra的话,思路稍微复杂一点,但是不用担心超时的问题,因为只需要在一个循环中对附近的每一个车站进行Dijkstra就行了。
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <vector>
#include <algorithm>
#include <stdlib.h>
#include <set>
#include <vector>
using namespace std;
#define M 1005
#define inf 0xfffffff
int map[M][M];
int f[M];
bool vis[M];
int f1[50];
int f2[50];
int t, s, d;
int big;
int find(){
int sm = inf;
int sm1 = inf;
int flag = 0;
for(int i = 1; i <= big; i++){
if(f[i] < sm && !vis[i]){
sm = f[i];
sm1 = i;
flag = 1;
}
}
if(flag == 0)
return -1;
return sm1;
}
void Dijkstra(){
int num;
for(int i = 1; i <= big; i++){
num = find();
if(num == -1)
return;
vis[num] = true;
for(int j = 1; j <= big; j++){
if(vis[j])
continue;
if(f[num] + map[num][j] < f[j])
f[j] = f[num] + map[num][j];
}
}
}
int main(){
int a, b, c;
while(scanf("%d%d%d",&t,&s,&d)!=EOF){
memset(f1,0,sizeof(f1));
memset(f2,0,sizeof(f2));
for(int i = 0; i < M; i++){
for(int j = 0; j < M; j++){
map[i][j] = inf;
}
}
big = -inf;
for(int i = 0; i < t; i++){
scanf("%d%d%d",&a,&b,&c);
if(map[a][b] != inf){ //这里需要注意,a,b间有多条路径
map[a][b] = min(c,map[a][b]);
map[b][a] = min(c,map[a][b]);
}
else{
map[a][b] = c;
map[b][a] = c;
}
if(a > big) //最大能够达到的点,也就是循环的边界
big = a;
if(b > big)
big = b;
}
for(int i = 0; i < s; i++){
scanf("%d",&f1[i]);
}
for(int j = 0; j < d; j++){
scanf("%d",&f2[j]);
}
int small = inf;
for(int i = 0; i < s; i++){ //对附近的车站进行函数调用
memset(vis,false,sizeof(vis));
a = f1[i];
for(int j = 1; j <= big; j++){
f[j] = map[a][j];
}
vis[a] = true;
Dijkstra();
for(int k = 0; k < d; k++){
if(f[f2[k]] < small)
small = f[f2[k]];
}
}
printf("%d\n",small);
}
return 0;
}