python 各种虚拟环境工具对比

1、conda分为anaconda和miniconda,anaconda包含一些软件包,miniconda为精简版。

适用于 Linux,OS X 和Windows

 

conda与venv区别:

如果说venv是虚拟环境管理器,pip是包管理器,那么conda则是两者的结合。
遗憾的是conda的包管理器做的一般且会安装过多依赖如TensorFlow自动安装cudnn(在主机配置了cudnn的情况下),大多数时候还是使用pip安装包。
但是,注意,pip只能安装Python的包,conda可以安装一些工具软件,即使这些软件不是基于Python开发的。
但是conda的虚拟环境管理还是可以的,一般使用venv会在该项目下创建虚拟环境,再不济也会在项目下创建venv的文件夹(含配置文件),当然pycharm下创建虚拟环境另说;然而conda每个虚拟环境不会占用项目文件夹的空间,它创建在用户设定的一个位置,这使得多个项目共享一个虚拟环境更加方便(只是方便,venv也是可以的,但是venv一般占用项目文件夹空间,而且venv命令行使用具有局限性)。
conda虚拟环境是独立于操作系统解释器环境的,即无论操作系统解释器什么版本(哪怕2.7),我也可以指定虚拟环境python版本为3.6(见文章开头所说原博客),而venv是依赖主环境的。
对于科学计算和大数据领域的人,conda是环境自动集成了numpy这样的主流科学计算包的,venv每个包都要自行下载。
conda有图形化环境管理器,venv没有。(虽然开发人员几乎不用图形界面conda)
 

2、venv 虚拟环境构建

从Python 3.3到3.4,建议的创建虚拟环境的方法是使用pyvenv命令行工具,默认情况下,Python 3安装中也包含这个工具。但在3.6及以上版本中,python -m venv才是正确的选择。

virtualenv的使用教程:

https://zhuanlan.zhihu.com/p/137624513

https://www.liujiangblog.com/course/python/6

https://zhuanlan.zhihu.com/p/107168303   虚拟环境的区别virtualenv和venv

 

3、pipenv的介绍

https://blog.csdn.net/ARPOSPF/article/details/113616988

 

 

 

参考:https://www.liaoxuefeng.com/wiki/1016959663602400/1019273143120480

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值