强连通分量(tarjan算法)

1,定义

强连通:两个点u,v可以互相到达

强连通分量,一个图中每一块的任意点可以互相到达的数量(不一定整个图强连通,但是局部强连通)

2,tarjan算法

思路:

1,寻找一个强连通分量:说直白点,寻找一个“环”,我们在用dfs遍历图的时候,可以把走过的点存起来,一旦成功找到一个环,我们把这个环的点标记然后逐一从存入的数组弹出(因为dfs深度遍历的原因,我们保证一旦找到一个环,dfs上的点连续一段都是这个环的点),显然后找到的点先弹出——任意联想到栈(我们可以手打一个栈数组)

2,dfs深度遍历当然需要一个dfn数组记录深度,还需要一个数组来表示其是否是环low数组,我们可以起初让dfn=low,当我们深度遍历环上最后一个点u时(假设这个点还没有访问过),毫无疑问,这个点下一个指向环的第一个点v(深度较低的点),我们可以low[u]=min(low[u],dfn[v]),即low[u]等于dfn[v]的深度,记录该深度有一个环,后面回去时,把环上的点的low都改为low[u](因为深度不断变深,环上点的low肯定小于第一个点的深度dfn[v]==low[v]==low[u](最后一个点更新后)

如图:

 核心代码就是

void tarjan(int u)
{
	dfn[u] = low[u] = ++dfncnt;//起初让dfn=low
	insta[u] = 1;//insta记录栈中存在这个数
	sta[++top] = u;//记录栈顶为u
	for (int i = head[u]; i; i = edge[i].next)//遍历子代
		{
			int v = edge[i].to;
			if (!dfn[v])//如果子代没有访问过,深入
				{
					tarjan(v);
					low[u] = min(low[u], low[v]);//回来时,如果有形成环,就会更新low[u],没有的话,low[u]深度一定小于子代的
				}
			else if (insta[v])low[u] = min(low[u], dfn[v]);//如果子代遍历过,询问是否在栈内,是,那就说明形成一个环,记录环上第一个点的深度,说明深度low[u]=dfn[v]存在一个环
		}
	if (dfn[u] == low[u])//回来时,如果low仍然等于dfn,说明u是环起点(自己跟自己也算一个环
		{
			++cnt;//记录强连通分量增加
			while (1)
				{
					int v = sta[top--];//不断退栈,top指针指向栈顶,减少就是退栈
					insta[v] = 0;//标记已经退栈
					scc[v] = cnt;//scc记录点v属于第几个强连通分量cnt
					if (u == v)break;//当退完u这个起点,退出退栈操作
				}
		}
}

3,练习题1:HDU - 3639 Hawk-and-Chicken

思路:缩点+反向入度

1,首先,如果有一群人(x人)形成一个环的互相赞赏,毫无疑问,他们给别人投票,那个人一次加x票,有人给他们其中一个人投票,环里面每个人都会加一票,所以,这个环看成一个点(缩点)

2,缩点后,你会发现,更新的图,箭头最终指向的那些点(就是被别人指向,自己不指向别人的点,才有可能为胜者们,毫无疑问存在这样的点,因为不存在,实际应该属于一个环(矛盾)),这时候可能思考单向箭头那么就拓扑排序,但是这样太费时间。

我们可以将箭头反向,他们就成为唯一不被别人指向的点,那么我们走完tarjan重新建反向图时,用in数组标记是否有被指向,最后dfs求取没有被指向的点的值即可

#include <bits/stdc++.h>
using namespace std;
#define ll     long long
typedef unsigned long long ull;
typedef pair<long long, long long> pll;
const int INF = 0x3f3f3f3f;         //int型的INF
const ll llINF = 0x3f3f3f3f3f3f3f3f;//ll型的llINF
const int N = 5e3 + 10;

int sta[N], scc[N], dfn[N], low[N], head[N], hd[N], sum[N], sz[N];
bool insta[N], in[N], vis[N];
int num, cnt, dfncnt, top, num1;
struct node
{
	int to, next;
} edge[30005], eg[30005];

void init()
{
	memset(head, 0, sizeof(head));
	memset(hd, 0, sizeof(hd));
	memset(dfn, 0, sizeof(dfn));
	memset(in, 0, sizeof(in));
	memset(sum, 0, sizeof(sum));//
	num = num1 = top = dfncnt = cnt = 0;
}

void add(int u, int v)//正向建图
{
	edge[++num].next = head[u];
	edge[num].to = v;
	head[u] = num;
}

void add1(int u, int v)//反向建图
{
	eg[++num1].next = hd[u];
	eg[num1].to = v;
	hd[u] = num1;
}

void tarjan(int u)
{
	dfn[u] = low[u] = ++dfncnt;
	insta[u] = 1;
	sta[++top] = u;
	for (int i = head[u]; i; i = edge[i].next)
		{
			int v = edge[i].to;
			if (!dfn[v])
				{
					tarjan(v);
					low[u] = min(low[u], low[v]);
				}
			else if (insta[v])low[u] = min(dfn[v], low[u]);
		}
	if (dfn[u] == low[u])
		{
			++cnt;
			sz[cnt] = 0;//sz数组存储每个环内点的数量,一个环(x人)给人的票一次就是x,自己内部赞赏是x-1
			while (1)
				{
					int v = sta[top--];
					insta[v] = 0;
					scc[v] = cnt;
					++sz[cnt];
					if (u == v)break;
				}
		}
}

int dfs(int u)//求指向u的票,只需要u自己内部赞同票加上他指向的点所获得的票
{
	vis[u] = 1;
	int ans = sz[u];
	for (int i = hd[u]; i; i = eg[i].next)
		{
			int v = eg[i].to;
			if (!vis[v])ans += dfs(v);
		}
	return ans;
}

int main()
{
	std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
	int t, t1 = 0, n, m, x, y;
	cin >> t;

	while (t--)
		{
			++t1;
			init();
			cin >> n >> m;
			for (int i = 1; i <= m; ++i)cin >> x >> y, add(x, y);
			for (int i = 0; i < n; ++i)if (!dfn[i])tarjan(i);
			for (int i = 0; i < n; ++i)
				{
					int u = scc[i];
					for (int j = head[i]; j; j = edge[j].next)
						{
							int v = scc[edge[j].to];
							if (u != v)add1(v, u), in[u] = 1;//反向建环的图
						}
				}
			int ans = -1;
			for (int i = 1; i <= cnt; ++i)
				{
					if (!in[i])	memset(vis, 0, sizeof(vis)), sum[i] = dfs(i) - 1, ans = max(ans, sum[i]);//没有被指向的,每次重置标记,求其值,最后sum-1,就是因为环内部认同是x-1
				}
			cout << "Case " << t1 << ": " << ans << endl;
			bool flag = 1;
			for (int i = 0; i < n; ++i)
				{
					if (sum[scc[i]] == ans)
						{
							if (flag)flag = 0, cout << i;
							else cout << ' ' << i;
						}
				}
			cout << endl;
		}
	return 0;
}

4,练习题2:The King’s Problem

思路:缩点+最小覆盖路径

满足可以是同一个州的条件:

1,如果u,v两点可以互相到达——必须一个州——显然,互相到达的环缩点为一个就好

2,如果u,v之间存在一条路径(不一定要能相互到达,可以单向,但是要求经过的城市都是这个州的),那么可以是一个州——我们缩点后,只剩下单向箭头,我们期望把他们分成尽可能少的部分,也就是尽可能多的点可以和一起(实际就是最小覆盖路径问题)

 

一个结论:最小路径覆盖==图上点总数--最大匹配数

最大匹配数的求法与二分图的匈牙利算法一样(我们把所有原点左右边都放一边)

 

#include <bits/stdc++.h>
using namespace std;
#define ll     long long
typedef unsigned long long ull;
typedef pair<long long, long long> pll;
const int INF = 0x3f3f3f3f;         //int型的INF
const ll llINF = 0x3f3f3f3f3f3f3f3f;//ll型的llINF
const int N = 5e3 + 10;

int sta[N], head[N], hd[N], dfn[N], low[N], scc[N], match[N];
bool insta[N], vis[N];
int num, num1, top, dfncnt, cnt;
struct node
{
	int to, next;
} edge[N * 20 ], eg[N * 20 ];

void init()
{
	memset(dfn, 0, sizeof(dfn));
	memset(head, 0, sizeof(head));
	memset(hd, 0, sizeof(hd));
	memset(match, 0, sizeof(match));
	memset(vis, 0, sizeof(vis));
	num = num1 = top = cnt = dfncnt = 0;
}

void add(int u, int v)
{
	edge[++num].next = head[u];
	edge[num].to = v;
	head[u] = num;
}

void add1(int u, int v)
{
	eg[++num1].next = hd[u];
	eg[num1].to = v;
	hd[u] = num1;
}

void tarjan(int u)
{
	dfn[u] = low[u] = ++dfncnt;
	insta[u] = 1;
	sta[++top] = u;
	for (int i = head[u]; i; i = edge[i].next)
		{
			int v = edge[i].to;
			if (!dfn[v])
				{
					tarjan(v);
					low[u] = min(low[u], low[v]);
				}
			else if (insta[v])low[u] = min(low[u], dfn[v]);
		}
	if (low[u] == dfn[u])
		{
			++cnt;
			while (1)
				{
					int v = sta[top--];
					insta[v] = 0;
					scc[v] = cnt;
					if (u == v)break;
				}
		}
}

int tfind(int u)//寻找u是否可以连出线,有返回1,匹配数+1
{
	for (int i = hd[u]; i; i = eg[i].next )
		{
			int v = eg[i].to;
			if (!vis[v])//v点是否被匹配过
				{
					vis[v] = 1;//更改vis写在里面,被匹配是右边的事,放外面会误标记左边找匹配的点
					if (!match[v] || tfind(match[v]))//没有被匹配,或者原来匹配值回去可以找到其他匹配点(就会返回1),或者写法,是判断有无被匹配在前,有才访问||后面的内容
						{
							match[v] = u;
							return 1;
						}
				}
		}
	return 0;
}

int main()
{
	std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
	int t, n, m, x, y;
	cin >> t;
	while (t--)
		{
			init();
			cin >> n >> m;
			for (int i = 1; i <= m; ++i)cin >> x >> y, add(x, y);
			for (int i = 1; i <= n; ++i)if (!dfn[i])tarjan(i);
			for (int i = 1; i <= n; ++i)//缩点重新建图
				{
					int u = scc[i];
					for (int j = head[i]; j; j = edge[j].next)
						{
							int v = scc[edge[j].to];
							if (u != v)add1(u, v);
						}
				}
			//cout << cnt;
			int ans = 0;
			for (int i = 1; i <= cnt; ++i)ans += tfind(i);
			cout << cnt - ans << endl;
		}
	return 0;
}

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Tarjan算法和Kosaraju算法都是求解有向图强连通分量算法,它们的时间复杂度都为O(N+M),其中N为图中节点数,M为图中边数。 Tarjan算法的基本思想是通过DFS遍历图中的节点,并在遍历的过程中维护一个栈,用于存储已经遍历过的节点。在遍历的过程中,对于每个节点,记录它被遍历到的时间戳和能够到达的最小时间戳,当一个节点的最小时间戳等于它自身的时间戳时,说明这个节点及其之前遍历到的节点构成了一个强连通分量,将这些节点从栈中弹出即可。 Kosaraju算法的基本思想是先对原图进行一次DFS,得到一个反向图,然后再对反向图进行DFS。在第二次DFS的过程中,每次从未被访问过的节点开始遍历,遍历到的所有节点构成一个强连通分量。 两种算法的具体实现可以参考以下代码: ```python # Tarjan算法 def tarjan(u): dfn[u] = low[u] = timestamp timestamp += 1 stk.append(u) for v in graph[u]: if not dfn[v]: tarjan(v) low[u] = min(low[u], low[v]) elif v in stk: low[u] = min(low[u], dfn[v]) if dfn[u] == low[u]: scc = [] while True: v = stk.pop() scc.append(v) if v == u: break scc_list.append(scc) # Kosaraju算法 def dfs1(u): vis[u] = True for v in graph[u]: if not vis[v]: dfs1(v) stk.append(u) def dfs2(u): vis[u] = True scc.append(u) for v in reverse_graph[u]: if not vis[v]: dfs2(v) # 构建图和反向图 graph = [[] for _ in range(n)] reverse_graph = [[] for _ in range(n)] for u, v in edges: graph[u].append(v) reverse_graph[v].append(u) # Tarjan算法求解强连通分量 dfn = [0] * n low = [0] * n timestamp = 1 stk = [] scc_list = [] for i in range(n): if not dfn[i]: tarjan(i) # Kosaraju算法求解强连通分量 vis = [False] * n stk = [] scc_list = [] for i in range(n): if not vis[i]: dfs1(i) vis = [False] * n while stk: u = stk.pop() if not vis[u]: scc = [] dfs2(u) scc_list.append(scc) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值