1. 数青蛙
算法原理:
运用模拟
r,o,a,k 去查找前驱字符,是否在哈希表中
如果存在,前驱数–,当前字符++
如果不存在,返回 -1
当到 c 时,去找最后一个字符是否在哎,哈希表中惨在
如果存在,最后一个字符–,当前字符++
如果不存在,当前字符++
代码:
class Solution {
public int minNumberOfFrogs(String croakOfFrogs) {
int c = 0;
int r = 0;
int o = 0;
int a = 0;
int k = 0;
char[] ch = croakOfFrogs.toCharArray();
int ret = 0;
for(int i = 0;i < ch.length;i++){
if(ch[i] == 'c'){
if(k > 0){
k--;
}else{
ret++;
}
c++;
}else if(ch[i] == 'r'){
c--;
r++;
}else if(ch[i] == 'o'){
r--;
o++;
}else if(ch[i] == 'a'){
o--;
a++;
}else if(ch[i] == 'k'){
a--;
k++;
}
if(c < 0 || r < 0 || o < 0 || a < 0){
break;
}
}
if(c != 0 || r != 0 || o != 0 || a != 0){
return -1;
}
return ret;
}
}
class Solution {
public int minNumberOfFrogs(String c) {
char[] croakOfFrogs = c.toCharArray();
String t = "croak";
int n = t.length();
int[] hash = new int[n];//数组模拟哈希表
Map<Character, Integer> index = new HashMap<>();//<x这个字符,x这个字符对行的下标>
for(int i = 0; i < n; i++) {
index.put(t.charAt(i), i);
}
for(char ch : croakOfFrogs) {
if(ch == t.charAt(0)) {
if(hash[n - 1] != 0) {
hash[n - 1]--;
}
hash[0]++;
}else {
int i = index.get(ch);
if(hash[i - 1] == 0) return -1;
hash[i - 1]--;
hash[i]++;
}
}
for(int i = 0; i < n-1; i++) {
if(hash[i] != 0) {
return -1;
}
}
return hash[n - 1];
}
}
2. 外观数列
算法原理:
运用模拟
利用双指针,找到相同的数字段,解释一下即可
代码:
class Solution {
public String countAndSay(int n) {
String ret = "1";
for(int i = 1; i < n; i++) {
StringBuilder tmp = new StringBuilder();
int len = ret.length();
for(int left = 0, right = 0; right < len; ) {
while(right < len && ret.charAt(left) == ret.charAt(right)) {
right++;
}
tmp.append(Integer.toString(right - left));
tmp.append(ret.charAt(left));
left = right;
}
ret = tmp.toString();
}
return ret;
}
}
3. 买卖股票的最佳时机 IV
题干:
整数数组 prices 和一个整数 k ,其中 prices[i] 是某支给定的股票在第 i 天的价格
最多可以完成 k 笔交易
算法原理:
1. 状态表示:
f[i][j] 表示:第 i 天结束后,完成了 j 笔交易,此时处于「有股票」状态的最大收益;
g[i][j] 表示:第 i 天结束后,完成了 j 笔交易,此时处于「无股票」状态的最大收益。
2. 状态转移方程
f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i])
g[i][j] = max(g[i - 1][j], f[i - 1][j - 1] + prices[i])
3. 初始化
当处于第 0 天的时候,只能处于「买⼊过⼀次」的状态,此时的收益为 -prices[0] ,因此 f[0][0] = - prices[0]
为了取 max 的时候,⼀些不存在的状态「起不到⼲扰」的作⽤,我们统统将它们初始化为 -INF
(用 INT_MIN 在计算过程中会有「溢出」的⻛险,这⾥ INF 折半取0x3f3f3f3f ,足够小即可
4. 填表顺序
从上往下填写每一行
每一行从左往右,两个表一起填
5. 返回值
g 表的最后一行里面的最大值
代码:
class Solution {
public int maxProfit(int k, int[] prices) {
//1. 预处理
int n = prices.length;
int INF = 0x3f3f3f3f;
k = Math.min(k, n / 2);
int[][] f = new int[n][k + 1];
int[][] g = new int[n][k + 1];
for(int i = 0; i <= k; i++) {
f[0][i] = g[0][i] = -INF;
}
f[0][0] = -prices[0];
g[0][0] = 0;
for(int i = 1; i < n; i++) {
for(int j = 0; j <= k; j++) {
f[i][j] = Math.max(f[i - 1][j],g[i - 1][j] - prices[i]);
g[i][j] = g[i - 1][j];
if(j >= 1) {
g[i][j] = Math.max(g[i][j], f[i - 1][j - 1] + prices[i]);
}
}
}
int ret = 0;
for(int i = 0; i <= k; i++) {
ret = Math.max(ret, g[n-1][i]);
}
return ret;
}
}