Hive知识总结(参考多人博客)

参考了多位大佬的博客,做了一个总结,如有侵犯,请及时联系我删除

Hive知识点总结

Hive内部表和外部表的区别

未被external修饰的是内部表(managed table),被external修饰的为外部表(external table);

  1. 内部表数据由Hive自身管理,外部表数据由HDFS管理;

  2. 内部表数据存储的位置是hive.metastore.warehouse.dir(默认:/user/hive/warehouse),外部表数据的存储位置由自己制定;

  3. 删除内部表会直接删除元数据(metadata)及存储数据;删除外部表仅仅会删除元数据,HDFS上的文件并不会被删除;

行存储和列存储

行式数据库存储在hdfs上式按行进行存储的,一个block存储一或多行数据。而列式数据库在hdfs上则是按照列进行存储,一个block可能有一列或多列数据。
如果要将数据进行压缩:

对于行式数据库,必然按行压缩,当一行中有多个字段,各个字段对应的数据类型可能不一致,压缩性能压缩比就比较差。
对于列式数据库,必然按列压缩,每一列对应的是相同数据类型的数据,故列式数据库的压缩性能要强于行式数据库。

Hive静态分区动态分区

分区的概念

  1. Hive的分区方式:由于Hive实际是存储在HDFS上的抽象,Hive的一个分区名对应HDFS上的一个目录名,子分区名就是子目录名,并不是一个实际字段。
    分区的好处

  2. 产生背景:如果一个表中数据很多,我们查询时就很慢,耗费大量时间,如果要查询其中部分数据该怎么办呢,这是我们引入分区的概念。

  3. Partition:分区,每张表中可以加入一个分区或者多个,方便查询,提高效率;并且HDFS上会有对应的分区目录:

  4. 语法:
    Hive分区是在创建表的时候用Partitioned by 关键字定义的,但要注意,Partitioned by子句中定义的列是表中正式的列,
    但是Hive下的数据文件中并不包含这些列,因为它们是目录名,真正的数据在分区目录下。

  5. 静态分区和 动态分区的区别

创建表的语法都一样

静态分区:加载数据的时候要指定分区的值(key=value),比较麻烦的是每次插入数据都要指定分区的值,创建多个分区多分区一样,以逗号分隔。
动态分区:
如果用上述的静态分区,插入的时候必须首先要知道有什么分区类型,而且每个分区写一个load data,太烦人。使用动态分区可解决以上问题,其可以根据查询得到的数据动态分配到分区里。其实动态分区与静态分区区别就是不指定分区目录,由系统自己选择。

UDF、UDAF、UDTF的区别:

Hive的SQL还可以通过用户定义的函数(UDF),用户定义的聚合(UDAF)和用户定义的表函数(UDTF)进行扩展。当Hive提供的内置函数无法满足你的业务处理需要时,此时就可以考虑使用用户自定义函数(UDF)

  • UDF(User-Defined-Function)一进一出
  • UDAF(User-Defined Aggregation Funcation)聚集函数,多进一出
  • UDTF(User-Defined Table-Generating Functions)一进多出,如lateral view explore()

Hive优化

慎用API

我们知道大数据场景下不害怕数据量大,害怕的是数据倾斜,怎样避免数据倾斜,找到可能产生数据倾斜的函数尤为关键,数据量较大的情况下,慎用count(distinct),count(distinct)容易产生倾斜问题。

设置合理的Mapreduce的task数量

map阶段优化
  1. 减少map数量
假设一个SQL任务:
Select count(1) from popt_tbaccountcopy_meswhere pt = '2012-07-04';
该任务的inputdir :  /group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04
共有194个文件,其中很多事远远小于128M的小文件,总大小9G,正常执行会用194个map任务。
Map总共消耗的计算资源:SLOTS_MILLIS_MAPS= 623,020

通过以下方法来在map执行前合并小文件,减少map数:
set mapred.max.split.size=100000000;
set mapred.min.split.size.per.node=100000000;
set mapred.min.split.size.per.rack=100000000;
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
再执行上面的语句,用了74个map任务,map消耗的计算资源:SLOTS_MILLIS_MAPS= 333,500
对于这个简单SQL任务,执行时间上可能差不多,但节省了一半的计算资源。
大概解释一下,100000000表示100M, 
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;这个参数表示执行前进行小文件合并,
前面三个参数确定合并文件块的大小,大于文件块大小128m的,按照128m来分隔,
小于128m,大于100m的,按照100m来分隔,把那些小于100m的(包括小文件和分隔大文件剩下的),进行合并,最终生成了74个块。
  1. 增大map数量
如何适当的增加map数?
当input的文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数,
来使得每个map处理的数据量减少,从而提高任务的执行效率。

假设有这样一个任务:
Select data_desc,
         count(1),
         count(distinct id),
         sum(case when ...),
         sum(case when ...),
         sum(...)
from a group by data_desc

如果表a只有一个文件,大小为120M,但包含几千万的记录,如果用1个map去完成这个任务,肯定是比较耗时的,
这种情况下,我们要考虑将这一个文件合理的拆分成多个,
这样就可以用多个map任务去完成。
set mapred.reduce.tasks=10;
create table a_1 as 
select * from a 
distribute by rand(123);

这样会将a表的记录,随机的分散到包含10个文件的a_1表中,再用a_1代替上面sql中的a表,则会用10个map任务去完成。
每个map任务处理大于12M(几百万记录)的数据,效率肯定会好很多。
reduce阶段优化
  1. Hive自己如何确定reduce数:

reduce个数的设定极大影响任务执行效率,不指定reduce个数的情况下,Hive会猜测确定一个reduce个数,基于以下两个设定:

hive.exec.reducers.bytes.per.reducer(每个reduce任务处理的数据量,默认为1000^3=1G)

hive.exec.reducers.max(每个任务最大的reduce数,默认为999)

计算reducer数的公式很简单N=min(参数2,总输入数据量/参数1)

即,如果reduce的输入(map的输出)总大小不超过1G,那么只会有一个reduce任务;

  1. 调整reduce个数方法一:

调整hive.exec.reducers.bytes.per.reducer参数的值;

set hive.exec.reducers.bytes.per.reducer=500000000; (500M)

select pt, count(1) from popt_tbaccountcopy_mes where pt = ‘2012-07-04’ group by pt;

这次有20个reduce

  1. 调整reduce个数方法二:

set mapred.reduce.tasks=15;

select pt,count(1) from popt_tbaccountcopy_mes where pt = ‘2012-07-04’ group by pt;

这次有15个reduce

  1. reduce个数并不是越多越好;

同map一样,启动和初始化reduce也会消耗时间和资源;

另外,有多少个reduce,就会有个多少个输出文件,如果生成了很多个小文件,那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题;

  1. 什么情况下只有一个reduce;

很多时候你会发现任务中不管数据量多大,不管你有没有调整reduce个数的参数,任务中一直都只有一个reduce任务;其实只有一个reduce任务的情况,除了数据量小于hive.exec.reducers.bytes.per.reducer参数值的情况外,还有以下原因:

  • 没有group by的汇总,比如把select pt,count(1) from popt_tbaccountcopy_mes where pt = ‘2012-07-04’ group by pt; 写成select count(1) from popt_tbaccountcopy_mes where pt = ‘2012-07-04’; 这点非常常见,希望大家尽量改写。
  • 用了Order by
  • 有笛卡尔积。

注意:在设置reduce个数的时候也需要考虑这两个原则:使大数据量利用合适的reduce数;是单个reduce任务处理合适的数据量;

小文件合并优化

Hdfs不适合小文件存储,文件数目小,容易在文件存储端造成瓶颈,影响处理效率。因此,可以通过合并Map和Reduce的结果文件来消除。

用于设置合并的参数有:

  • 是否合并Map输出文件:hive.merge.mapfiles=true(默认值为true)
  • 是否合并Reduce端输出文件:hive.merge.mapredfiles=false(默认值为false)
  • 合并文件的大小:hive.merge.size.per.task=25610001000(默认值为256000000)

针对小文件文件及其解决方案

小文件是如何产生的:

  • 动态分区插入数据,产生大量的小文件,从而导致map数量剧增;

  • reduce数量越多,小文件也越多(reduce的个数和输出文件是对应的);

  • 数据源本身就包含大量的小文件。

    小文件问题的影响:

  • 从Hive的角度看,小文件会开很多map,一个map开一个JVM去执行,所以这些任务的初始化,启动,执行会浪费大量的资源,严重影响性能。

  • 在HDFS中,每个小文件对象约占150byte,如果小文件过多会占用大量内存。这样NameNode内存容量严重制约了集群的扩展。

    小文件问题的解决方案:

从小文件产生的途径就可以从源头上控制小文件数量,方法如下:

  • 使用Sequencefile作为表存储格式,不要用textfile,在一定程度上可以减少小文件;
  • 减少reduce的数量(可以使用参数进行控制);
  • 少用动态分区,用时记得按distribute by分区;

对于已有的小文件,我们可以通过以下几种方案解决:

  • 使用hadoop archive命令把小文件进行归档;
  • 重建表,建表时减少reduce数量;
  • 通过参数进行调节,设置map/reduce端的相关参数,如下:
//每个Map最大输入大小(这个值决定了合并后文件的数量) 
set mapred.max.split.size=256000000;    
//一个节点上split的至少的大小(这个值决定了多个DataNode上的文件是否需要合并)  
set mapred.min.split.size.per.node=100000000;  
//一个交换机下split的至少的大小(这个值决定了多个交换机上的文件是否需要合并)    
set mapred.min.split.size.per.rack=100000000;  
//执行Map前进行小文件合并  
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;   

设置map输出和reduce输出进行合并的相关参数:
[java] view plain copy
//设置map端输出进行合并,默认为true  
set hive.merge.mapfiles = true  
//设置reduce端输出进行合并,默认为false  
set hive.merge.mapredfiles = true  
//设置合并文件的大小  
set hive.merge.size.per.task = 256*1000*1000  
//当输出文件的平均大小小于该值时,启动一个独立的MapReduce任务进行文件merge。  
set hive.merge.smallfiles.avgsize=16000000

Sql优化

列裁剪、分区裁剪 :主要是在查询数据中只读取所需要用到的列(分区),而忽略其他;

对Sql语句本身的优化

Join优化:条目少的表/子查询放在Join操作符的左边(新版的hive已经对小表JOIN大表和大表JOIN小表进行了优化。小表放在左边和右边已经没有明显区别。)

空key过滤–解决方案

假设日志中常会出现信息丢失,比如每日约为20亿的全网日志,其中的user_id为主键,在日志收集过程中会丢失,出现主键为null的情况,如果取其中的user_id和bmw_users关联,就会碰到数据倾斜的问题。原因是Hive中,主键为null值的项会被当做相同的Key而分配进同一个计算Map。

① user_id为空的不参与关联,子查询过滤null

SELECT * FROM log a
JOIN bmw_users b ON a.user_id IS NOT NULL AND a.user_id=b.user_id
UNION ALL SELECT * FROM log a WHERE a.user_id IS NULL

② 函数过滤null

SELECT * FROM log a LEFT OUTER
JOIN bmw_users b ON
CASE WHEN a.user_id IS NULL THEN CONCAT('dp_hive', RAND()) ELSE a.user_id END = b.user_id;

压缩格式

Hive最终是转为MapReduce程序来执行的,而MapReduce的性能瓶颈在于网络IO和磁盘IO,要解决性能瓶颈,最主要的是减少数据量,对数据进行压缩是个好的方式。压缩虽然是减少了数据量,但是压缩过程要消耗CPU的,但是在Hadoop中,往往性能瓶颈不在于CPU,CPU压力并不大,所以压缩充分利用了比较空闲的CPU。

常用压缩方法比较

在这里插入图片描述

压缩格式的使用

Job输出文件按照block以Gzip的方式进行压缩:

set mapreduce.output.fileoutputformat.compress=true // 默认值是 false
set mapreduce.output.fileoutputformat.compress.type=BLOCK // 默认值是 Record
set mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.GzipCodec // 默认值是 org.apache.hadoop.io.compress.DefaultCodec

Map输出结果也以Gzip进行压缩:

set mapred.map.output.compress=true
set mapreduce.map.output.compress.codec=org.apache.hadoop.io.compress.GzipCodec // 默认值是 org.apache.hadoop.io.compress.DefaultCodec 

JVM重用

JVM重用对hive的性能具有非常大的 影响,特别是对于很难避免小文件的场景或者task特别多的场景,这类场景大多数执行时间都很短。jvm的启动过程可能会造成相当大的开销,尤其是执行的job包含有成千上万个task任务的情况。

set mapred.job.reuse.jvm.num.tasks=10;
JVM的一个缺点是,开启JVM重用将会一直占用使用到的task插槽,以便进行重用,直到任务完成后才能释放。如果某个“不平衡“的job中有几个 reduce task 执行的时间要比其他reduce task消耗的时间多得多的话,那么保留的插槽就会一直空闲着却无法被其他的job使用,直到所有的task都结束了才会释放。

数据倾斜

表现:任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。因为其处理的数据量和其他reduce差异过大。

原因:某个reduce的数据输入量远远大于其他reduce数据的输入量

1)、key分布不均匀

2)、业务数据本身的特性

3)、建表时考虑不周

4)、某些SQL语句本身就有数据倾斜

关键词 情形 后果
join 其中一个表较小,但是key集中 分发到某一个或几个Reduce上的数据远高于平均值
join 大表与大表,但是分桶的判断字段0值或空值过多 这些空值都由一个reduce处理,非常慢
group by group by 维度过小,某值的数量过多 处理某值的reduce非常耗时
count distinct 某特殊值过多 处理此特殊值reduce耗时
解决方案:

(1)参数调节

set hive.map.aggr=true

set hive.groupby.skewindata=true

(2) 熟悉数据的分布,优化sql的逻辑,找出数据倾斜的原因。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值