Python——爬取某瓣电影评论信息并生成词云图

🐵个人主页:ximury.blog.csdn.net
🐸Github:github.com/ximury
🐹精言佳句:岁月缱绻,葳蕤生香

项目概览

目录

.
├── config
│   ├── config.conf
│   ├── config_init.py
│   └── config_reader.py
├── csv
│   └── comment-1292052.csv
├── main.py
├── picture
│   └── fish-1292052.png
├── README.md
├── requirements.txt
├── src
│   ├── get_comments.py
│   └── movie_cloud.py
└── static
    ├── SIMLI.TTF
    └── stop_words.txt

简述

  1. config.conf
    项目配置文件
  2. requirements.txt
    项目所需依赖,执行pip3 install -r requirements.txt安装即可
  3. stop_words.txt
    生成词云图用到的停用词文件

功能实现

爬取评论

import json
from os import path
from urllib.parse import urlencode
from urllib.request import urlopen, Request
import ssl
import pandas as pd
from lxml import etree

from config.config_reader import movieConfig, netConfig


def get_comment(base_url, file_name, user_agent, request_info):
    users_list = []
    stars_list = []
    time_list = []
    content_list = []
    # ssl验证问题:忽略不信任的证书。就可以访问该网站
    context = ssl._create_unverified_context()
    for i in range(0, 1200, 100):
        # url编码后,传入Request()函数;headers参数伪装浏览器
        request_info["start"] = i
        full_url = f"{base_url}?{urlencode(request_info)}"
        print(full_url)
        req = Request(url=full_url, headers={"User-agent": user_agent})
        try:
            with urlopen(req, context=context) as res:
                print(res.getcode())
                res = json.loads(res.read())  # json转dict
                # 解析 HTML
                selector = etree.HTML(res["html"])
                # 用 xpath 获取单页所有评论
                comments = selector.xpath('//div[@class="comment"]')
                # 遍历所有评论,获取详细信息
                for comment in comments:
                    # 获取用户名
                    user = comment.xpath(".//h3/span[2]/a/text()")[0]
                    # 获取评星
                    star = comment.xpath(".//h3/span[2]/span[2]/@class")[0][7:8]
                    # 获取时间
                    date_time = comment.xpath(".//h3/span[2]/span[3]/@title")
                    # 有的时间为空,需要判断下
                    if len(date_time) != 0:
                        date_time = date_time[0]
                        date_time = date_time[:10]
                    else:
                        date_time = None
                    # 获取评论文字
                    comment_text = comment.xpath(".//p/span/text()")[0].strip()
                    # 添加所有信息到列表
                    users_list.append(user)
                    stars_list.append(star)
                    time_list.append(date_time)
                    content_list.append(comment_text)
        except Exception as e:
            print(e)

    # 用字典包装
    comment_dic = {
        "user": users_list,
        "star": stars_list,
        "time": time_list,
        "comments": content_list,
    }
    # 转换成 DataFrame 格式
    comment_df = pd.DataFrame(comment_dic)
    # 保存数据
    project_path = path.dirname(path.dirname(__file__))
    comment_df.to_csv(f"{project_path}/csv/{file_name}.csv")


if __name__ == "__main__":
    # 伪装成浏览器
    user_agent = (
        "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) "
        "Chrome/97.0.4692.99 Safari/537.36"
    )
    base_url = f"{netConfig.url}/subject/{movieConfig.subject}/comments"
    request_info = {
        "percent_type": "",
        "start": 0,
        "limit": 100,
        "sort": "new_score",
        "status": "P",
        "comments_only": "1",
    }
    file_name = "comment-{}".format(movieConfig.subject)
    get_comment(
        base_url=base_url,
        file_name=file_name,
        user_agent=user_agent,
        request_info=request_info,
    )

生成词云图

import shutil
from os import path

import jieba
import pandas as pd
import stylecloud
from IPython.display import Image

from config.config_reader import cloudConfig


def generate_cloud_map(subject, icon):
    project_path = path.dirname(path.dirname(__file__))
    df = pd.read_csv(f"{project_path}/csv/comment-{subject}.csv", index_col=0)
    cts_list = df["comments"].values.tolist()
    cts_str = "".join([str(i).replace("\n", "").replace(" ", "") for i in cts_list])
    stop_words = []
    with open(f"{project_path}/static/stop_words.txt", "r", encoding="utf-8") as f:
        lines = f.readlines()
        for line in lines:
            stop_words.append(line.strip())
    # jieba 分词
    word_list = jieba.cut(cts_str)
    words = []
    for word in word_list:
        if word not in stop_words:
            words.append(word)
    cts_str = ",".join(words)
    print(cts_str)

    # 如果icon_name找不到,报错:TypeError: 'NoneType' object is not subscriptable
    icon_name = f"fas fa-{icon}"
    file_name = f"{icon}-{subject}.png"
    file_path = f"{project_path}/picture/"
    stylecloud.gen_stylecloud(
        text=cts_str,
        max_words=300,
        collocations=False,
        font_path=f"{project_path}/static/SIMLI.TTF",
        # fa-arrow-circle-right,fa-user-graduate,fa-bone,fa-apple-alt
        icon_name=icon_name,
        size=800,
        output_name=file_name,
    )
    # 若dst是file_path+file_name则会覆盖,而file_path则不会覆盖
    shutil.move(src=file_name, dst=file_path + file_name)
    Image(filename=file_path + file_name)


if __name__ == "__main__":
    generate_cloud_map(subject=cloudConfig.subject, icon=cloudConfig.icon_name)

效果展示

在这里插入图片描述

自定义词云图形状

图标地址

https://fontawesome.com/icons

选取图标

在这里插入图片描述
在这里插入图片描述

项目地址

https://github.com/ximury/reptile-movie

以下是一个使用Python爬取最新评论生成词云图的示例代码: ```python import requests from bs4 import BeautifulSoup import jieba from wordcloud import WordCloud import matplotlib.pyplot as plt # 爬取评论的函数 def get_comments(url): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'} response = requests.get(url, headers=headers) soup = BeautifulSoup(response.text, 'html.parser') comments = soup.find_all('span', class_='short') return [comment.get_text() for comment in comments] # 生成词云的函数 def generate_wordcloud(text): wordcloud = WordCloud(font_path='simhei.ttf', background_color='white', width=800, height=600).generate(text) plt.imshow(wordcloud, interpolation='bilinear') plt.axis('off') plt.show() # 主函数 def main(): url = 'https://movie.douban.com/subject/1292052/comments?status=P' # 替换为你要爬取的豆电影页面URL comments = get_comments(url) text = ' '.join(comments) text = ' '.join(jieba.cut(text)) generate_wordcloud(text) if __name__ == '__main__': main() ``` 这段代码的主要功能如下: 1. 使用requests库爬取评论页面。 2. 使用BeautifulSoup解析HTML内容,提取评论文本。 3. 使用jieba库对文本进行分词。 4. 使用wordcloud库生成词云图。 5. 使用matplotlib库显示生成词云图。 使用这段代码时,请注意以下几点: 1. 确保安装了所需的Python库:requests, bs4, jieba, wordcloud, matplotlib。 2. 将font_path参数设置为本地中文字体文件路径,以确保中文能正确显示。 3. 修改url变量为你想要爬取的豆电影页面URL。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

九思梦鹿

喜欢,请记得点赞或赞赏哟

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值