树链剖分及进阶 边权化点权 luogu4315 luogu1505

本文介绍了如何将边权问题转化为点权问题,利用树链剖分进行解决。通过在DFS1中处理边权转点权,DFS2保持不变,再结合线段树处理区间操作和查询。在查询时需要注意,由于存储的是父子节点间边权,所以查询x到y的最大值时,实际应查询x+1到y。此方法适用于 luogu4315 和 luogu1505 等题目。
摘要由CSDN通过智能技术生成

树链剖分模板 点权 2遍dfs+线段树

#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for(int i=a;i<n;i++)
#define per(i,a,n) for(int i=n-1;i>=a;i--)
typedef long long ll;
typedef double db;
typedef pair<int,int> P;
typedef vector<int> VI;
//const ll mod=1000000007;
const int maxn=2e5+10;
//const int inf=0x3f3f3f3f;
const ll inf = 1e18;
//const int inf=0x7fffffff;
ll gcd(ll a,ll b) {
   
    return b?gcd(b,a%b):a;
}
//	  freopen("1.txt","r",stdin);
//    freopen("2.txt","w",stdout);
#define ms(a) memset(a,0,sizeof(a))
#define mss(a) memset(a,-1,sizeof(a))
#define msi(a) memset(a,inf,sizeof(a))
#define iossync ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
//head
//luogu 3384 模板 轻重链剖分 
//可实现操作
// 
//1,将树从x到y结点最短路径上所有节点的值都加上z 
//2,求树从x到y结点最短路径上所有节点的值之和
//3,将以x为根节点的子树内所有节点值都加上z
//4,求以x为根节点的子树内所有节点值之和

ll mod;
int n,m;
//预备工作,处理好边
int val[maxn];
int head[maxn],ed;//ed计数器,cnt要给dfs2用,呜呜呜
struct Edge{
   
	int to,next;
}edge[maxn<<1];
void addedge(int u,int v)
{
   
	edge[++ed].to=v;
	edge[ed].next=head[u];
	head[u]=ed;
} 
//dfs1 需要做的事情
//跑出每个点的深度,每个点的父亲,
//每个非叶子的节点的子树大小(这个大小是包括自己的)
//每个非叶子的节点的重儿子 
int depth[maxn];
int father[maxn],size[maxn];
int maxson[maxn],son[maxn];
void dfs1(int now,int fa,int dep)
{
   //now当前节点 fa 父节点 dep 当前深度
 	depth[now]=dep;
 	father[now]=fa;
 	size[now]=1;//记录非叶子节点的子树大小
	maxson[now]=-1;
	son[now]=-1;
	for(int i = head[now];i;i=edge[i].next)
	{
   
		int d=edge[i].to;
		if(d==fa)
		continue;
		dfs1(d,now,dep+1);
		size[now]+=size[d];
		if(size[d]>maxson[now])
		{
   //标记每一个非叶子节点的重儿子 
			maxson[now]=size[d];
			son[now]=d;
		}
	}
}
//dfs2
int cnt;
int id[maxn],newid[maxn];
int top[maxn];//记录当前节点所在重链的首节点 
int newval[maxn];
void dfs2(int now,int first)
{
   //first 当前重链的首节点
	id[now]=++cnt;//记录当前节点的新编号 
	newval[cnt]=val[now];//按新编号记录节点,并将之前的值赋值给新的编号点
	top[now]=first;//记录当前首节点 
	if(son[now]==-1)//是叶子节点,压根没东西
	{
   //自己是一条重链,可以回滚了 
		return ;
	}
	else
	{
   
		dfs2(son[now],first);//优先处理重儿子
		for(int i=head[now];i;i=edge[i].next)
		{
   
			int d=edge[i].to;
			if(d==son[now] || d==father[now])
			continue;
			//对于非叶子节点,对于每一个轻儿子,都有一个从自己开始的重链 
			dfs2(d,d);
		} 
	}
}

//建树
struct Segment_Tree{
   
//(x,y) 二元组 表示区间加上x ,再对y取max
//也就是ai=max(ai+x,y)
//同理,区间加标记转化为 (x,-∞)
//区间覆盖就是(-∞,x)
	#define ls(p) (p<<1)
	#define rs(p) (p<<1|1)
	struct Tree{
   
		ll sum;
		ll lazy;
		int l,r;
		Tree()
		{
   
			sum=lazy=0;
			l=r=0;
		}
		void init()
		{
   
			sum=lazy=0;
			l=r=0;
		}
	}t[maxn<<2];
	void push_up(int p)
	{
   
		t[p].sum=t[ls(p)].sum+t[rs(p)].sum;
		t[p].sum%=mod;
		t[p].l=t[ls(p)].l;
		t[p].r=t[rs(p)].r;
	}
	void update(int p,int k)
	{
   
		t[p].sum+=k*(t[p].r-t[p].l+1);
		t[p].sum%=mod;
		t[p].lazy+=k;
		t[p].lazy%=mod;
	}
	void push_down(int p)
	{
   
//		if(t[p].lazy!=0)
//		cout<<p<<" "<<t[p].sum<<"\n";
		if(t[p].lazy!=0)
		{
   
			update(ls(p),t[p].lazy);
			update(rs(p),t[p].lazy);
			t[p].lazy=0;
		}
	}
	void build(int p,int l,int r)
	{
   
		if(l==r)
		{
   
			t[p].sum=newval[l]%mod;
			t[p].l=l;
			t[p].r=l;
			return ;
		}
		int mid=(l+r)>>1;
		build(ls(p),l,mid);
		build(rs(p),mid+1,r);
		push_up(p);
	}
	ll query(int p,int l,int r,int ql,int qr)
	{
   
		if(ql<=l && r<=qr)
		{
   
			return t[p].sum;		
		}
		push_down(p);
		ll ans=0;
		int mid=(l+r)>>1;
		if(ql<=mid)
		(ans+=query(ls(p),l,mid,ql,qr))%=mod;
		if(mid<qr)
		(ans+=query(rs(p),mid+1,r,ql,qr))%=mod;
		return ans;
	}
	void change(int p,int l,int r,int ql,int qr,int k)
	{
   
//		cout<<l<<" "<<r<<" "<<ql<<" "<<qr<<" "<<k<<"\n";
		if(ql<=l && r<=qr)
		{
   
			t[p].lazy+=k;
			t[p].lazy%=mod;
			t[p].sum+=k*(r-l+1);
			t[p].sum%=mod; 
			return ;
		}
		push_down(p);
		int mid=(l+r)>>1;
		if(ql<=mid)
		change(ls(p),l,mid,ql,qr,k);
		if(mid<qr)
		change(rs(p),mid+1,r,ql,qr,k);
		push_up(p);
	}
	#undef ls
	#undef rs
}S1;

ll query_sum_both(int x,int y)
{
   
	ll ans=0;
	while(top[x]!=top[y])//x,y2点不在一条链
	{
   
		if(depth[top[x]]<depth[top[y]])
		swap(x,y);//默认x是那个链的深度最大的  
		ans+=S1.query(1,1,n,id[top[x]],id[x]);
		//加上x到这条链顶部的距离
		ans%=mod;//这题得取余 
		x=father[top[x]]; 
	}
	//x,y在一条链 
	if(depth[x]>depth[y])
	swap(x,y);//默认x是那个dep小的
	ans+=S1.query(1,1,n,id[x],id[y]);
	return ans%mod; 
}

ll query_sum_alone(int x)
{
   
//	ll ans=0;
	return S1.query(1,1,n,id[x],id[x]+size[x]-1)<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值