BM59-N皇后问题

文章介绍了N皇后问题的解决思路,主要使用回溯算法,通过一行一行地放置皇后并检查冲突来进行。剪枝思想用于优化搜索过程,减少无效的尝试。给出了Java代码实现,包括如何判断位置的有效性以及如何递归地解决子问题。
摘要由CSDN通过智能技术生成

题目

N 皇后问题是指在 n * n 的棋盘上要摆 n 个皇后。

要求:任何两个皇后不同行,不同列也不在同一条斜线上。

求给一个整数 n ,返回 n 皇后的摆法数。

数据范围: 1≤n≤9。

要求:空间复杂度 O(1) ,时间复杂度 O(n!)。

例如当输入4时,对应的返回值为2,

对应的两种四皇后摆位如下图所示:

示例1

输入:1

返回值:1

示例2

输入:8

返回值:92


思路:回溯

回溯可以理解为:通过选择不同的岔路口来通往目的地(找到想要的结果)
  1. 每一步都选择一条路出发,能进则进,不能进则退回上一步(回溯),换一条路再。
  2. 树、图的深度优先搜索(DFS)、八皇后、走迷宫都是典型的回溯应用。

回溯算法模板框架:

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

①三皇后:

②四皇后:

由图中不难看出 3、5 都发生了回溯,那么什么是剪枝思想呢?

如果第一次选的是0下标节点,那么和这个节点的斜对角节点1,和这个节点的同一列的节点0都不会再被选中,因为是按一行一行进行选择的所以行的限制不做考虑。这种越过一部分的节点不做选择的操作称为剪枝操作。 

③八皇后:

由上面的四皇后我们可以推及到8皇后问题的操作:

和四皇后的方法一样一行一行进行选择,如果发现能放的节点数不够存储剩下皇后则回溯到上一个操作,重新选择节点。(上面的图并不是完整的回溯过程~)

④n皇后:

不同行不同列,那么肯定棋盘每行都会有一个皇后,每列都会有一个皇后。如果我们确定了第一个皇后的行号与列号,则相当于接下来在n−1行中查找n−1个皇后,这就是一个子问题,因此使用递归:

  • 终止条件: 当最后一行都被选择了位置,说明n个皇后位置齐了,增加一种方案数返回。
  • 返回值: 每一级要将选中的位置及方案数返回。
  • 本级任务: 每一级其实就是在该行选择一列作为该行皇后的位置,遍历所有的列选择一个符合条件的位置加入数组,然后进入下一级。

具体做法:

  • step 1:对于第一行,皇后可能出现在该行的任意一列,我们用一个数组chess记录皇后出现的位置。
  • step 2:如果皇后出现在第一列,那么第一行的皇后位置就确定了,接下来递归地在剩余的n−1行中找n−1个皇后的位置。
  • step 3:每个子问题检查是否符合条件,我们可以对比所有已经记录的行,对其记录的列号查看与当前行列号的关系:即是否同行、同列或是同一对角线。

代码

import java.util.*;

public class Solution {
    /**
     * @param n int整型 the n
     * @return int整型
     */
    public int Nqueen (int n) {
        return solveNQueens(n).size();
    }

    public List<List<String>> solveNQueens(int n) {
        char[][] chess = new char[n][n];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                 chess[i][j] = '.';
            }
        }
        List<List<String>> res = new ArrayList<>();
        solve(res, chess, 0);
        return res;
    }

    private void solve(List<List<String>> res, char[][] chess, int row) {
        if (row == chess.length) {
            res.add(construct(chess));
            return;
        }
        for (int col = 0; col < chess.length; col++) {
            if (valid(chess, row, col)) {
                chess[row][col] = 'Q';
                solve(res, chess, row + 1);
                chess[row][col] = '.';
            }
        }
    }

    //row表示第几行,col表示第几列
    private boolean valid(char[][] chess, int row, int col) {
        //判断当前列有没有皇后,因为他是一行一行往下走的,我们只需要检查走过的行数即可,通俗一点就是判断当前坐标位置的上面有没有皇后
        for (int i = 0; i < row; i++) {
            if (chess[i][col] == 'Q') {
                return false;
            }
        }
        //判断当前坐标的右上角有没有皇后
        for (int i = row - 1, j = col + 1; i >= 0 && j < chess.length; i--, j++) {
            if (chess[i][j] == 'Q') {
                return false;
            }
        }
        //判断当前坐标的左上角有没有皇后
        for (int i = row - 1, j = col - 1; i >= 0 && j >= 0; i--, j--) {
            if (chess[i][j] == 'Q') {
                return false;
            }
        }
        return true;
    }

    //把数组转为list
    private List<String> construct(char[][] chess) {
        List<String> path = new ArrayList<>();
        for (int i = 0; i < chess.length; i++) {
            path.add(new String(chess[i]));
        }
        return path;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值