在gradle工程使用jmh测试spring
什么是JMH
JMH,Java Microbenchmark Harness
,是专门用于代码微基准测试的工具套件。
我们为什么需要JMH
大家可能会疑问,我就用这样的方式来测试效率不好吗?
long start=System.currentTimeMillis();
doxxx();
Systime.out.println(System.currentTimeMillis()-start);
这么说来原因就很多了,比如:
- 程序预热(线程池是否已经扩容完毕、JIT热点代码)
- 程序一般要运行多次才能计算出比较准确的耗时
- 前置逻辑中产生的对象导致gc,结果影响当前方法的测试
- 多线程并行、并发场景下的测试
gradle依赖
testImplementation 'org.openjdk.jmh:jmh-core:1.33'
testAnnotationProcessor 'org.openjdk.jmh:jmh-generator-annprocess:1.33'
String效率
关于字符串拼接的效率问题也算是老生常谈了,都说如果要循环拼接字符串,那最好使用StringBuilder
,不要直接用+
。但是很少人能提供明确的数据支撑。接下来我们先看个demo,感受一下jmh。
package com.example.jmh;
import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.results.format.ResultFormatType;
import org.openjdk.jmh.runner.Runner;
import org.openjdk.jmh.runner.RunnerException;
import org.openjdk.jmh.runner.options.Options;
import org.openjdk.jmh.runner.options.OptionsBuilder;
import java.util.concurrent.TimeUnit;
@BenchmarkMode({Mode.AverageTime})
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@Warmup(time = 1, iterations = 5)
@Measurement(time = 1, iterations = 5)
@Fork(1)
@State(value = Scope.Benchmark)
public class StringTest {
@Param({"10", "100", "1000"})
private int size;
public static void main(String[] args) throws RunnerException {
Options opt = new OptionsBuilder()
.include(StringTest.class.getSimpleName())
.result("StringTest_result.json")
.resultFormat(ResultFormatType.JSON).build();
new Runner(opt).run();
}
@Benchmark
public String testAdd() {
String a = "";
for (int i = 0; i < size; i++) {
a = a + i;
}
return a;
}
@Benchmark
public String testConcat() {
String a = "";
for (int i = 0; i < size; i++) {
a = a.concat("" + i);
}
return a;
}
@Benchmark
public String testBuilder() {
StringBuilder a = new StringBuilder();
for (int i = 0; i < size; i++) {
a.append(i);
}
return a.toString();
}
@Benchmark
public String testBuffer() {
StringBuffer a = new StringBuffer();
for (int i = 0; i < size; i++) {
a.append(i);
}
return a.toString();
}
}
结果
Benchmark (size) Mode Cnt Score Error Units
StringTest.testAdd 10 avgt 5 127.439 ± 3.774 ns/op
StringTest.testAdd 100 avgt 5 1915.880 ± 41.530 ns/op
StringTest.testAdd 1000 avgt 5 199442.392 ± 21708.330 ns/op
StringTest.testBuffer 10 avgt 5 89.245 ± 1.318 ns/op
StringTest.testBuffer 100 avgt 5 1026.880 ± 10.613 ns/op
StringTest.testBuffer 1000 avgt 5 13192.122 ± 174.511 ns/op
StringTest.testBuilder 10 avgt 5 71.272 ± 2.464 ns/op
StringTest.testBuilder 100 avgt 5 870.357 ± 14.289 ns/op
StringTest.testBuilder 1000 avgt 5 11498.802 ± 253.298 ns/op
StringTest.testConcat 10 avgt 5 312.639 ± 10.854 ns/op
StringTest.testConcat 100 avgt 5 3675.755 ± 163.944 ns/op
StringTest.testConcat 1000 avgt 5 204830.905 ± 3241.692 ns/op
从上面的结果中可以看到,随着拼接次数的增加10->100->1000每个方法的效率都会降低。但是使用StringBuilder进行字符串拼接的效率依旧是最高的,其次是StringBuffer,然后是字符串加法,效率最低的concat。
基本参数概念
@BenchmarkMode
标识JMH进行Benchmark时所使用的模式。
Throughput
:吞吐量。比如“1秒内可以执行多少次调用”,单位是ops/time
AverageTime
:每次调用的平均耗时。比如“每次调用平均耗时xxx毫秒”,单位是time/ops
SampleTime
:随机取样,最后输出取样结果的分布。比如“99%的调用在xxx毫秒内,99.99%的调用在xxx毫秒以内”SingleShotTime
:只运行一次,往往同时设置warmup=0,一般用于测试冷启动的性能。
上面的这些模式并不是只能使用某一个,这些模式是可以被组合使用的,比如
@BenchmarkMode({Mode.AverageTime, Mode.SampleTime})
@State
通过State可以指定一个对象的作用范围,jmh通过scope来进行实例化和共享操作。@State可以被继承使用,如果父类定义了该注解,子类则无需定义。由于jmh可以进行多线程测试,所以不同的scope的隔离级别如下:
Scope.Benchmark
:全局共享,所有的测试线程共享同一个实例对象。可以用来测试有状态的实例在多线程下的性能。Scope.Group
:同一个线程组内部的线程共享一个实例对象。Scope.Thread
:每个线程获取到都是不一样的实例对象。
在上面字符串拼接性能测试的样例中,我们使用的就是Scope.Benchmark
@OutputTimeunit
输出结果的时间单位,咱们上面用的是纳秒,即TimeUnit.NANOSECONDS
@Warmup
程序预热所需要的一些参数,可以用在类或者方法上。由于JVM存在JIT机制,所以一般前几次的效率都可能会不太理想,所以需要让程序先预热一下再跑。这样可以保证测试结果的准确性。参数如下:
iterations
:预热的次数,默认值是org.openjdk.jmh.runner.Defaults#WARMUP_ITERATIONS
=5time
:每次预热执行的时长,默认值是org.openjdk.jmh.runner.Defaults#WARMUP_TIME
=10秒timeUnit
:上面那个时长对应的单位类型,默认是秒batchSize
:每个操作的基准方法调用次数,默认值是org.openjdk.jmh.runner.Defaults#WARMUP_BATCHSIZE
=1。1就代表一次一次的调用,如果是2那就代表2次2次的调用。
@Measurement
这个参数与@Warmup
中的参数完全一样,只是@Warmup
是用在预热上,预热结果不算入最终的结果中。而@Measurement
是指实际测试时的参数。
@Fork
默认值是org.openjdk.jmh.runner.Defaults#MEASUREMENT_FORKS
=5,可以手动指定。@Fork
中设置是多少,那jmh执行测试时就会创建多少个独立的进程来进行测试。但是需要注意的是,不管有多少个进程进行测试,他们都是串行的。当fork为0时,表示不需要进行fork。官方解释是这样的:
JVMs are notoriously good at profile-guided optimizations. This is bad for benchmarks, because different tests can mix their profiles together, and then render the “uniformly bad” code for every test. Forking (running in a separate process) each test can help to evade this issue.
JMH will fork the tests by default.
翻译成人话就是说,首先因为JVM存在profile-guided optimizations
的特性,但是这样的特性是不利于进行基准测试的。因为不同的测试方法会混在一起,最后会导致结果出现偏差。为了避免这样的偏差才有了@Fork的存在。关于这个偏差的问题可以参考官方的这个例子:code-tools/jmh: 2be2df7dbaf8 jmh-samples/src/main/java/org/openjdk/jmh/samples/JMHSample_12_Forking.java
所以为了避免这样的问题,我们可以设置@Fork(1)
这样每一个测试的方法都会跑在不同的jvm进程中,也就避免了相互影响。
@Thread
每一个测试进程(JVM)中的线程数。
@Param
用来指定某个参数的多种情况,比如上面字符串的例子中的:
@Param({"10", "100", "1000"})
private int size;
特别适合用来测试一个函数在不同的参数输入的情况下的性能。只能用在字段上,同时必须使用@State
注解声明隔离级别。
实战
一、Random与ThreadLocalRandom
我们都知道获取随机数可以使用Random
,同时在官方文档中也强调Random
虽然是线程安全的,但是如果在多线程的情况下,最好还是使用ThreadLocalRandom
。那么,Random与ThreadLocalRandom在效率上相差多少呢?我们在实际使用过程中该如何选择呢?
@BenchmarkMode({Mode.AverageTime})
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@Warmup(time = 1, iterations = 3)
@Measurement(time = 1, iterations = 5)
@Fork(1)
@Threads(5)
@State(value = Scope.Benchmark)
public class RandomTest {
private final Random random = new Random();
private final ThreadLocal<Random> randomThreadLocalHolder = ThreadLocal.withInitial(Random::new);
public static void main(String[] args) throws RunnerException {
Options opt = new OptionsBuilder()
.include(RandomTest.class.getSimpleName())
.result("RandomTest_result.json")
.resultFormat(ResultFormatType.JSON).build();
new Runner(opt).run();
}
@Benchmark
public int random() {
return random.nextInt();
}
@Benchmark
public int randomThreadLocalHolder() {
return randomThreadLocalHolder.get().nextInt();
}
@Benchmark
public int threadLocalRandom() {
return ThreadLocalRandom.current().nextInt();
}
}
看下结果:
Benchmark Mode Cnt Score Error Units
RandomTest.random avgt 5 423.784 ± 20.159ns/op
RandomTest.randomThreadLocalHolder avgt 5 11.369 ± 0.509ns/op
RandomTest.threadLocalRandom avgt 5 4.322 ± 0.374ns/op
从结果上看ThreadLocalRandom.current().nextInt()
完胜,而且效率差别非常大。同时我们也没必要自己搞ThreadLocal来封装Random。因为JDK提供的ThreadLocalRandom.current()
就已经是天花板了。
二、写热点
@BenchmarkMode({Mode.AverageTime})
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@Warmup(time = 1, iterations = 3)
@Measurement(time = 1, iterations = 5)
@Fork(1)
@Threads(10)
@State(value = Scope.Benchmark)
public class HotWriteTest {
private final LongAdder longAdder = new LongAdder();
private final AtomicLong atomicLong = new AtomicLong();
public static void main(String[] args) throws RunnerException {
Options opt = new OptionsBuilder()
.include(HotWriteTest.class.getSimpleName())
.result("HotWriteTest_result.json")
.resultFormat(ResultFormatType.JSON).build();
new Runner(opt).run();
}
@Benchmark
public void longAdder() {
longAdder.increment();
}
@Benchmark
public void atomicLong() {
atomicLong.incrementAndGet();
}
}
测试结果:
Benchmark Mode Cnt Score Error Units
HotWriteTest.atomicLong avgt 5 210.160 ± 27.965 ns/op
HotWriteTest.longAdder avgt 5 14.293 ± 2.339 ns/op
三、同步队列性能测试+SpringBoot集成
SpringBoot工程如下:
public interface IQueue {
void put(Object o) throws InterruptedException;
Object take() throws InterruptedException;
}
@Component("arrayQueue")
public class ArrayQueue implements IQueue {
private static final ArrayBlockingQueue<Object> QUEUE = new ArrayBlockingQueue<>(100000);
@Override
public void put(Object o) throws InterruptedException {
QUEUE.put(o);
}
@Override
public Object take() throws InterruptedException {
return QUEUE.take();
}
}
@Component("linkedQueue")
public class LinkedQueue implements IQueue {
private static final LinkedBlockingQueue<Object> QUEUE = new LinkedBlockingQueue<>(100000);
@Override
public void put(Object o) throws InterruptedException {
QUEUE.put(o);
}
@Override
public Object take() throws InterruptedException {
return QUEUE.take();
}
}
@SpringBootApplication(scanBasePackages = "com.example.jmh")
public class SpringBootApp {
public static void main(String[] args) {
ConfigurableApplicationContext context = SpringApplication.run(SpringBootApp.class, args);
IQueue arrayQueue = context.getBean("arrayQueue", IQueue.class);
IQueue linkedQueue = context.getBean("linkedQueue", IQueue.class);
}
}
测试代码如下:
@BenchmarkMode({Mode.AverageTime})
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@Warmup(time = 1, iterations = 2)
@Measurement(time = 1, iterations = 3)
@Fork(1)
@State(Scope.Group)
public class SpringBootTest {
private ConfigurableApplicationContext applicationContext;
private IQueue arrayQueue;
private IQueue linkedQueue;
public static void main(String[] args) throws RunnerException {
Options opt = new OptionsBuilder()
.include(SpringBootTest.class.getSimpleName())
.result("SpringBootTest.json")
.resultFormat(ResultFormatType.JSON).build();
new Runner(opt).run();
}
@Setup
public void init() {
applicationContext = SpringApplication.run(SpringBootApp.class);
arrayQueue = applicationContext.getBean("arrayQueue", IQueue.class);
linkedQueue = applicationContext.getBean("linkedQueue", IQueue.class);
}
@TearDown
public void down() {
applicationContext.close();
}
@Group("arrayQueue")
@GroupThreads(2)
@Benchmark
public void arrayQueuePut() throws InterruptedException {
arrayQueue.put(new Object());
}
@Group("arrayQueue")
@GroupThreads(10)
@Benchmark
public Object arrayQueueGet() throws InterruptedException {
return arrayQueue.take();
}
@Group("linkedQueue")
@GroupThreads(2)
@Benchmark
public void linkedQueuePut() throws InterruptedException {
linkedQueue.put(new Object());
}
@Group("linkedQueue")
@GroupThreads(10)
@Benchmark
public Object linkedQueueGet() throws InterruptedException {
return linkedQueue.take();
}
}
测试结果:
Benchmark Mode Cnt Score Error Units
SpringBootTest.arrayQueue avgt 3 719.003 ± 139.696 ns/op
SpringBootTest.arrayQueue:arrayQueueGet avgt 3 829.722 ± 162.348 ns/op
SpringBootTest.arrayQueue:arrayQueuePut avgt 3 165.408 ± 26.638 ns/op
SpringBootTest.linkedQueue avgt 3 1019.508 ± 95.074 ns/op
SpringBootTest.linkedQueue:linkedQueueGet avgt 3 1176.427 ± 109.428 ns/op
SpringBootTest.linkedQueue:linkedQueuePut avgt 3 234.914 ± 23.304 ns/op
与JUnit的区别
俗话说条条大路通罗马。JUnit解决是测试一条道路能不能通往罗马,而JMH是测试哪条通往罗马的道路最快。在我看来,JUnit更多的是功能测试,而JMH是性能测试。这两个测试的不是一个方面。
参考链接
为什么要用JMH?何时应该用? - 知乎 (zhihu.com)
JMH(Java Micro Benchmark) 简介 - 逝者如斯夫 - BlogJava
JMH使用说明_lxbjkben的博客-CSDN博客_jmh使用
JAVA 拾遗 — JMH 与 8 个测试陷阱 - 徐靖峰|个人博客 (cnkirito.moe)