Mysql索引底层数据结构

本文深入解析MySQL中的索引原理,包括索引的优缺点、合理使用原则及B+树为何被选为底层数据结构。通过对比二叉树、红黑树、Hash和B树,阐明B+树的优势。

索引是帮助MySQL高效获取数据结构的排好序的数据结构。

为什么要创建索引呢?

因为它有以下优点:
(1)通过索引可以减少数据的扫描量(就好比将全书扫描,变成了根据目录找)
(2)索引可以把对硬盘的随机IO变为顺序IO
(3)索引可以在排序、分组等操作时避免创建临时表
(4)大大加快数据的查询速度

创建索引有什么缺点呢?

**1、创建索引和维护索引要耗费时间,并且随着数据量的增加所耗费的时间也会增加

2、索引也需要占空间,我们知道数据表中的数据也会有最大上线设置的,如果我们有大量的索引,索引文件可能会比数据文件更快达到上线值

3、当对表中的数据进行增加、删除、修改时,索引也需要动态的维护,降低了数据的维护速度。**

索引的使用原则:

通过上面说的优点和缺点,我们应该可以知道,并不是每个字段度设置索引就好,也不是索引越多越好,而是需要自己合理的使用。

1、对经常更新的表就避免对其进行过多的索引,对经常用于查询的字段应该创建索引

2、数据量小的表最好不要使用索引,因为由于数据较少,可能查询全部数据花费的时间比遍历索引的时间还要短,索引就可能不会产生优化效果。

3、在一同值少的列上(字段上)不要建立索引,比如在学生表的"性别"字段上只有男,女两个不同值。相反的,在一个字段上不同值较多可是建立索引。
       
索引存储在文件里
索引结构:
1.二叉树
2.红黑树
3.Hash
4.B树

MySQL选择B+树作为索引的底层数据结构,
B+树底层存储数据:
1.非叶子节点不存储data,只存储key,可以增大度
2.叶子节点不存储指针
3.顺序访问指针,提高区间访问的性能
下面我们通过对比来阐明选择B+树作为底层数据结构的原因:
1.二叉树与B+树相比
(1)二叉树查询和排序效率低于B+树,因为它可能退化成链表 二叉一次范围缩小1/2,B+树一次范围一次缩小1/m
(2)二叉树索引从文件中加载内存 io很耗时 一次只能加载一个节点,但是B+树一个节点存放多个数据 一页(内存的单位4k)
(3)平衡二叉树不虽然会退化成链表,但其需要旋转很多次,索引结构变化太频繁,IO很耗时 一次只能加载一个节点
2.红黑树与B+树相比
红黑树从任意一个节点开始,到它的任何一个叶子节点黑色节点的数目是相同的 查询效率低 io很耗时 一次只能加载一个节点
3.Hash与B+相比
(1)因为Hash索引比较的是经过Hash计算的值,所以只能进行等式比较,不能用于范围查询
(2)由于哈希值是按照顺序排列的,但是哈希值映射的真正数据在哈希表中就不一定 按照顺序排列,所以无法利用Hash索引来加速任何排序操作
(3)不能用部分索引键来搜索,因为组合索引在计算哈希值的时候是一起计算的。
(4)当哈希值大量重复且数据量非常大时,其检索效率并没有B+索引高的。
4.B树和B+树相比:
(1)1.B+树比较容易控制高度mysql限制索引树的高度不能超过三层
(2)B+树对所有数据查询的效率是平均的;B+树只在叶子节点存放数据,非叶子节点只存放关键字。但是B树非叶子节点 存放的关键字同时又是数据。B树查询效率不平均(离根节点近的查询快,离根节点远的查询慢)
(3)B+树用链表将叶子节点连接起来。适合做范围查询和排序

毫米波雷达系统工作在毫米波频段,通过发射与接收电磁波并解析回波信号,实现对目标的探测、定位及识别。相较于传统雷达技术,该系统在测量精度、环境抗干扰性及气象适应性方面表现更为优越。本研究聚焦于德州仪器开发的IWR1843DCA1000型号毫米波雷达,系统探究其在多模态数据采集与多样化应用场景中的技术路径及创新实践。 IWR1843DCA1000传感器为一款高度集成的毫米波探测设备,采用调频连续波技术与多输入多输出架构,可执行高精度目标测量及成像任务。研究过程中,团队对该设备的性能参数进行了全面评估,并在下列领域展开应用探索: 在数据采集环节,借助专用硬件接口连接雷达传感器,实现原始信号的高效捕获。团队研发了配套的数据采集程序,能够实时记录传感器输出并执行初步信号处理,为后续分析构建数据基础。 通过构建FMCW-MIMO雷达仿真平台,完整复现了雷达波的发射接收流程及信号处理机制。该仿真系统能够模拟目标运动状态及环境变量对雷达波形的影响,为系统性能验证与参数优化提供数字化实验环境。 基于高分辨率测距能力,结合目标检测与轨迹追踪算法,实现对人体运动模式的精确重构。通过点云数据的解析,为行为模式分析与场景理解提供多维信息支撑。 利用雷达回波信号的深度解析,生成表征人体空间分布的热力图像。该技术为复杂环境下的定位问题提供了直观可视化解决方案。 针对精细手势动作的识别需求,应用机器学习方法对雷达生成的点云序列进行特征提取与模式分类,建立手势动作的自动识别体系。 通过分析人体表面对毫米波信号的反射特性,开发非接触式生理参数监测方法,可有效检测呼吸韵律与心脏搏动频率等生命体征指标,为健康监护领域提供新的技术途径。 本研究的顺利开展,不仅深化了IWR1843DCA1000雷达系统的应用研究层次,同时为毫米波技术在多元领域的拓展应用建立了技术支撑体系。通过实证分析与仿真验证相结合的研究模式,该项目为行业应用提供了可靠的技术参照与实践范例,有力推动了毫米波雷达技术的产业化进程。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
基于直接模拟蒙特卡洛(DSMC)方法的气体分子运动仿真工具,为微观尺度气体动力学研究提供数值计算支持。该计算工具通过统计方法模拟稀薄条件下气体粒子的运动轨迹与碰撞行为,适用于航空航天工程、微纳流体系统等存在低密度气体效应的技术领域。 为便于高等院校理工科专业开展数值仿真教学,开发者采用矩阵实验室(Matlab)平台构建了模块化仿真程序。该程序兼容多个Matlab发行版本(2014a/2019b/2024b),内置标准化案例数据集可实现开箱即用。程序架构采用参数化设计理念,关键物理参数均通过独立变量模块进行管理,支持用户根据具体工况调整分子数密度、边界条件和碰撞模型等参数。 代码实现遵循计算流体力学的最佳实践规范,主要特征包括:采用分层模块架构确保算法逻辑清晰,关键计算单元配备完整的物理注释,变量命名符合工程仿真惯例。这种设计既有利于初学者理解分子动力学模拟原理,也方便研究人员进行算法改进与功能拓展。 该教学工具主要面向计算机科学、电子工程、应用数学等专业的本科教学场景,可用于课程实验、综合设计项目及学位论文等学术活动。通过将抽象的气体动力学理论转化为可视化的数值实验,有效促进学生对统计物理与计算方法的融合理解。在工程应用层面,该工具能胜任微机电系统流场分析、高海拔空气动力学特性研究、纳米孔道气体输运等现象的定量评估。 随着微纳制造与空间技术的发展,稀薄气体仿真在半导体工艺优化、临近空间飞行器设计等前沿领域的应用价值日益凸显。本仿真工具通过提供可靠的数值实验平台,为相关领域的科研创新与人才培养提供技术支持。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
MySQL 索引底层数据结构主要有 B-Tree 和 Hash 结构两大类。 ### B-Tree B-Tree 是一种自平衡的树形数据结构,主要用于数据库和其他需要快速查找、插入和删除操作的数据存储系统中。它有以下几个关键特征: 1. **节点层次**:每个节点可以有多个子节点,并允许包含多个键值对,使得数据可以在树的较高层存储,提高查询效率。 2. **最大值限制**:节点中包含的最大键的数量是由节点的最大度数(分支因子)决定的。这意味着在同一级的节点之间存在某种形式的均匀分布。 3. **排序**:所有键都按升序排列,同时其左右子节点分别存储比当前节点小和大的键值部分。 4. **平衡**:通过调整内部结点的高度,保持整棵树的平衡状态,确保所有的路径长度大致相等。 ### Hash 结构 Hash 结构用于快速定位特定键对应的值。其核心在于利用哈希函数将键转换成一个哈希码,然后用这个哈希码作为索引来直接访问存储位置。 1. **哈希表**:基本的 hash 数据结构就是一个数组,每个元素对应着一个桶。当插入新元素时,使用哈希函数计算出该元素应该存放的位置,即哈希码对应的数组下标。 2. **冲突解决**:由于不同的键可能会得到相同的哈希码,因此需要策略处理这种冲突情况,常见的解决办法包括线性探测、链地址法和二次探查等。 3. **动态调整**:为了维持性能,哈希表通常会通过调整大小或重新哈希函数等方式来应对负载增加的情况。 ### MySQL 中的索引应用 MySQL 使用 B-Tree 结构来构建其默认类型的索引(如BTREE),这使得索引具有高效搜索、插入和删除的特点。对于 Hash 索引,则在某些场景下提供更快的查找速度,尤其是在单个列上使用并且数据集不是非常庞大时。 了解索引底层数据结构有助于优化查询性能,合理设计数据库结构和查询语句,以及更好地理解和管理数据库的运行状况。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值