- 博客(1348)
- 收藏
- 关注
原创 【大语言模型-4】BLOOM模型
BLOOM(BigScience Large Open-science Open-access Multilingual)是一个开源的多语言大规模语言模型,旨在推动自然语言处理领域的开放科学和合作。通过支持 46 种语言,BLOOM 在文本生成、翻译、问答等多种 NLP 任务中表现出色。作为一个完全开源的模型,BLOOM 提供了巨大的研究和应用潜力,同时也促进了 AI 社区的透明性、协作和公平性。
2025-02-28 14:24:37
811
原创 【大语言模型-3】 LLaMA 模型
LLaMA(Large Language Model Meta AI)是由 Meta 发布的一系列高效、大规模的预训练语言模型。LLaMA 采用了标准的 Transformer 架构,并通过对计算资源的优化,使其在多个规模的任务中都能表现出色。由于其开源的特性,LLaMA 成为研究人员和开发者进行自然语言处理任务时的重要工具。LLaMA 的设计思想是高效性、灵活性和可扩展性,并且它具备跨语言能力,能够广泛应用于文本生成、分类、问答系统、翻译等领域。
2025-02-28 14:23:37
808
原创 【LLM-2】GLM架构
是一种强大的统计建模方法,它通过将线性回归模型扩展到更广泛的分布和数据类型,能够处理多种类型的回归问题。其主要思想包括使用线性预测器链接函数和指数分布族,使得模型可以适应不同的任务需求,如分类、回归、计数问题等。GLM 提供了一种统一且灵活的框架,广泛应用于医学、金融、保险、社会科学等领域。
2025-02-28 14:22:46
654
原创 【LLM-1】PPL困惑度计算
PPL 可以理解为“语言模型对于一个给定文本的困惑程度”。它与模型对给定句子的概率估计有关,数值越低,表示语言模型对文本的预测越准确。PPL2HpPPL2Hp其中,( H§ ) 是语言模型的交叉熵(Cross-Entropy)Hp−1N∑i1Nlogpwi∣w1w2wi−1Hp−N1i1∑Nlogpwi∣w1w2wi−1。
2025-02-28 14:22:06
928
原创 【传奇分布式-11】锁表问题
锁表问题主要是由数据库中不同事务对同一资源(表)的竞争和并发访问导致的。为了避免锁表问题,常见的解决策略包括选择合适的锁粒度、避免死锁、使用乐观并发控制、分批次处理大事务等。合适的并发控制可以显著提高数据库的性能和系统的吞吐量,同时避免长时间的事务阻塞和死锁问题。
2025-02-28 11:19:44
826
原创 【openCV-94】Wingloss
Wing Loss 是一种高效的损失函数,能够在姿态估计和关键点检测任务中提供更精细的优化,特别是在目标位置接近时表现优越。它通过平滑误差和加权衰减的方式,有效地减小了大误差对训练的干扰,促进了模型对小误差区域的精细调整。通过合理调整超参数 ( \alpha ) 和 ( \delta ),Wing Loss 可以为各种计算机视觉任务提供稳定且高效的训练过程。
2025-02-28 11:19:03
911
原创 【openCV-93】姿态检测
姿态检测是计算机视觉中的一个重要领域,涉及从图像中检测物体或人体的空间位置和方向。随着深度学习技术的发展,现代姿态检测技术能够高效、准确地识别和分析复杂场景中的姿态信息。姿态检测在众多领域,如人体动作分析、增强现实、机器人控制、医疗诊断等方面有着广泛的应用,未来随着技术的进步,姿态检测将更精准、实时,并具有更强的应用潜力。
2025-02-28 11:16:33
730
原创 【openCV-92】超参数
超参数是机器学习模型中非常重要的因素,它们直接影响模型的训练过程和最终性能。通过合理的超参数调优,能够显著提高模型的效果。超参数的选择通常通过网格搜索、随机搜索、贝叶斯优化等方法进行,而交叉验证可以帮助我们避免过拟合问题。对于复杂的任务和大数据集,超参数调优可能会非常耗时和计算资源,但它仍然是构建高性能模型的关键步骤。
2025-02-28 11:15:59
590
原创 【openCV-91】遗传算法
遗传算法是一种强大的优化工具,尤其适用于复杂的、非线性的优化问题。它模拟了自然界的进化过程,通过适应度评估、选择、交叉和变异等机制,逐步找到问题的最优解。尽管遗传算法有一定的计算成本,并且对参数敏感,但它的全局搜索能力和适应性使其在许多实际问题中取得了成功应用。
2025-02-28 11:15:13
747
原创 【传奇分布式-10】poll,epoll
poll是一种用于处理多个文件描述符的 I/O 多路复用技术,它允许程序监视多个文件描述符的状态(如是否可读、可写或发生错误)。poll是在早期的 Unix 和 Linux 系统中广泛使用的技术,它可以通过一个系统调用来监视多个文件描述符,从而实现非阻塞 I/O。epoll是 Linux 提供的一个高效的 I/O 多路复用机制,是poll和select的改进版。epoll的优势在于它不需要每次都将文件描述符传递到内核,也不需要每次都扫描所有的文件描述符,因此在处理大量文件描述符时,epoll的性能要远高于。
2025-02-28 11:07:43
612
原创 【传奇分布式-9】负载均衡
负载均衡是现代应用架构中不可或缺的一部分,通过合理的流量分配和服务器管理,它能够提高系统的可用性、性能和扩展性。选择合适的负载均衡策略和算法,结合实际应用的特点和需求,可以有效应对高并发和高流量的挑战,确保系统在面对大规模请求时依然稳定运行。
2025-02-28 11:07:10
689
原创 【传奇分布式-8】线程池
线程池是一种高效的资源管理工具,特别适用于处理并发任务密集型的应用程序。通过复用线程、避免频繁创建和销毁线程、合理管理线程数量,线程池能够显著提高系统性能并减少资源消耗。然而,正确配置和管理线程池参数也至关重要,需要根据应用场景和负载进行合理调优。
2025-02-28 11:03:06
647
原创 【传奇分布式-7】数据化连接池
数据化连接池在现代应用中是数据库操作性能优化的一个关键技术。通过管理和复用数据库连接,连接池不仅能提高应用程序的响应速度,还能减少数据库的负载和资源消耗。合理配置连接池参数,能够让系统在高并发和高负载下更加稳定、高效。如果你的应用频繁与数据库进行交互,连接池几乎是必不可少的。
2025-02-28 11:01:56
789
原创 【传奇分布式-6】web.py
web.py是一个非常简洁且易于学习的 Python Web 框架,适用于需要快速构建原型或者小型 Web 应用的场景。它不提供很多复杂的功能,但如果你的需求非常简单,并且你更喜欢“自己动手”的方式,它是一个很不错的选择。
2025-02-28 11:01:05
572
原创 【传奇分布式-5】sql注入
SQL注入(SQL Injection)是一种常见的安全漏洞攻击方式,攻击者通过在输入字段(如网页表单、URL参数等)中插入恶意的SQL代码,从而操控数据库执行未经授权的操作,进而窃取、修改或删除数据,甚至控制整个服务器。
2025-02-28 11:00:13
218
原创 【openCV-90】困难样本挖掘
困难样本挖掘是机器学习中一种针对训练数据中“难以学习”或“容易被误分类”样本的技术。其目的是提高模型训练过程中的效率和准确性,尤其是在处理不平衡数据集或有较高噪声的数据时。通过专门挑选这些困难样本进行训练,模型可以更加专注于改进其在这些难点上的表现,从而提升整体的性能。在机器学习中,困难样本通常是指那些模型在当前训练阶段难以正确分类的样本。错误分类样本:模型当前分类错误的样本,意味着模型没有很好地学习到这些样本的特征。边界样本:靠近分类边界的样本。
2025-02-27 01:46:34
533
原创 【openCV-89】人脸检测
人脸检测是计算机视觉中的一个重要任务,旨在从图像或视频中识别并定位出人脸的位置。人脸检测不仅是人脸识别、表情分析、面部特征点检测等高级任务的前置步骤,而且在安防监控、智能家居、自动驾驶等多个领域都具有广泛应用。人脸检测是计算机视觉中的重要任务之一,广泛应用于安防、娱乐、医疗等多个领域。随着深度学习技术的快速发展,基于卷积神经网络(CNN)的检测方法,如MTCNN、Faster R-CNN、YOLO等,极大提高了检测的精度和速度。
2025-02-27 01:45:33
1046
原创 【openCV-88】视频读写
视频读写是指从视频文件中读取数据(视频解码)和将数据写入视频文件(视频编码)的一系列操作。在计算机视觉和多媒体处理中,视频处理通常包括对视频的读取、处理和保存。这些操作可以帮助我们从视频流中提取信息,或将处理后的图像和视频内容输出到视频文件中。视频读写涉及多个环节,如解码、编码、格式转换和流控制等。视频读写是视频处理中的基础操作,通过读取视频文件、对帧数据进行处理、最后将处理后的数据写入新的视频文件,完成视频的编辑和分析。OpenCV是一个非常常用的库,可以简便地进行视频读写操作。
2025-02-27 01:45:00
856
原创 【openCV-87】 拉普拉斯边缘检测
拉普拉斯边缘检测是一种基于二阶导数的图像边缘检测方法,通过计算图像的二阶导数,能够检测图像中的零交叉点,从而找到边缘。虽然拉普拉斯算子在边缘检测中表现出较高的精度,但由于其对噪声敏感,通常需要在应用前先对图像进行平滑处理(如使用高斯滤波)。拉普拉斯边缘检测广泛应用于图像分割、物体识别、医学图像处理等领域,是图像处理中的一个重要工具。
2025-02-27 01:42:47
931
原创 【openCV-86】Sobel算子
Sobel算子是一种经典的边缘检测算子,广泛用于图像处理和计算机视觉中,用于检测图像中的边缘。它通过计算图像灰度值的梯度(即像素值变化的速率),来识别图像中的边缘。Sobel算子的核心思想是根据每个像素周围的邻域像素计算其梯度,以此来突出图像中的变化区域(即边缘)。Sobel算子是一种简单而有效的边缘检测方法,广泛应用于图像处理和计算机视觉领域。通过计算图像的水平和垂直梯度,Sobel算子能够检测出图像中的显著边缘,并提供边缘的方向信息。
2025-02-27 01:42:15
788
原创 【openCV-85】边缘检测
边缘检测是图像处理中的一种重要技术,用于识别图像中的显著变化区域。这些变化通常反映了物体的边界、纹理的变化或光照条件的不同。边缘是图像中灰度值或颜色发生急剧变化的地方,通常与物体的形状、轮廓、边界等结构信息相关。边缘检测在图像分割、物体识别、图像匹配、视觉跟踪等任务中起着至关重要的作用。边缘检测的目标是找出图像中灰度值或颜色变化最为剧烈的部分,这些变化通常对应着物体的边缘。常见的边缘检测方法包括梯度算子、拉普拉斯算子、Canny边缘检测等。
2025-02-27 01:40:46
769
原创 【openCV-84】高斯滤波
高斯滤波是一种常用的图像平滑技术,广泛应用于图像去噪、模糊化和边缘检测等领域。它的主要特点是使用高斯函数(即正态分布函数)作为滤波核,对图像进行平滑处理,从而减少图像中的噪声并平滑图像细节。与均值滤波相比,高斯滤波能够更好地保留图像中的边缘信息,同时去除高频噪声。高斯滤波是一种强大的图像平滑和去噪工具,广泛应用于图像处理的各个方面。通过高斯函数的加权平均,能够去除噪声的同时较好地保留图像的边缘信息。尽管它在去噪和模糊方面具有优越性,但也存在细节丧失和计算量较大的问题。
2025-02-27 01:38:37
656
原创 【openCV-83】均值滤波
均值滤波是一种常见的线性图像平滑技术,广泛应用于图像去噪和去除细节。它通过用一个像素邻域的平均值替换图像中的每个像素值,从而减少图像中的随机噪声,尤其是高频噪声。均值滤波是一种简单而有效的低通滤波器,可以平滑图像的亮度和颜色,使得噪声得到有效抑制。均值滤波是一种简单且有效的图像去噪方法,适用于减少图像中的随机噪声,尤其是高斯噪声。然而,由于其对图像细节的平滑作用,它并不适合用于保留图像边缘和细节。在实际应用中,均值滤波常常作为一种预处理手段,或者与其他更复杂的滤波方法结合使用,以达到更好的去噪效果。
2025-02-27 01:35:37
768
原创 【openCV-82】图像噪声
图像噪声是指在图像的采集、传输或处理过程中,附加到原始图像上的随机扰动或不希望的信号。噪声通常表现为图像中的不规则、随机的亮度或颜色变化,可能影响图像的质量和分析结果。图像噪声不仅影响人眼的视觉效果,还会对后续的图像处理、特征提取、物体识别等任务造成干扰。
2025-02-27 01:33:28
865
原创 【openCV-81】透射变换
透射变换,也叫做投影变换(Projective Transformation),是几何变换中最复杂的一类。与仿射变换和几何变换不同,透射变换不仅可以处理平移、旋转、缩放、剪切等变换,还能够模拟图像的透视效果。透射变换是通过一组4x4矩阵(或2D空间中的3x3矩阵)来表示的,能够在更广泛的情况下变换空间中的物体,特别是在三维空间中映射到二维平面上的变换。透射变换的一个重要特性是它能够处理物体的透视失真。它使得远离观察点的物体看起来更小,而靠近观察点的物体看起来更大,符合我们在现实世界中的透视效果。
2025-02-27 01:31:56
639
原创 【openCV-80】几何变换
几何变换是对几何对象(如点、线、面等)的空间位置进行修改的数学运算。在计算机图形学、计算机视觉以及图像处理领域,几何变换被广泛应用于图像扭曲、图像配准、物体识别等任务。几何变换不仅可以改变物体的形状,还可以改变其位置、大小、方向等。刚性变换(Rigid Transformation):包括平移和旋转,它们不会改变物体的形状和大小。非刚性变换(Non-rigid Transformation):如缩放、剪切等,它们可能会改变物体的形状和大小。
2025-02-27 01:30:57
510
原创 【openCV-79】仿射变换
仿射变换是一种广泛应用于图形学、计算机视觉、图像处理等领域的几何变换方法。它通过对物体的位置、形状、大小和方向进行线性变换和/或平移来实现目标。仿射变换的特点是,它保持了直线性和平行性,但不会保留距离或角度。换句话说,仿射变换可以改变图像的尺寸、形状、旋转、剪切等,但不改变物体的整体结构或比例。
2025-02-27 01:29:53
555
原创 【openCV-78】SiamMask
(由于技术原因,联网搜索暂不可用)是一种基于的目标跟踪模型,由 Wang et al. 在 2019 年提出。它是和的进一步扩展,不仅能够进行目标跟踪,还能生成目标的像素级掩码(Mask),从而实现更精确的目标定位和分割。
2025-02-27 01:23:04
612
原创 【openCV-77】SiamRPN
(由于技术原因,联网搜索暂不可用)(Siamese Region Proposal Network)是目标跟踪领域的一个重要模型,由 Bo Li 等人在 2018 年提出。它是基于(Fully-Convolutional Siamese Networks)的改进版本,通过引入,显著提升了目标跟踪的精度和鲁棒性。
2025-02-27 01:22:18
422
原创 【openCV-76】SiameseFC
(由于技术原因,联网搜索暂不可用)(全称:Fully-Convolutional Siamese Networks for Object Tracking)是一种用于的深度学习模型。它由 Luca Bertinetto 等人在 2016 年提出,是当时目标跟踪领域的一项重要突破。SiamFC 的核心思想是利用**孪生网络(Siamese Network)**结构,通过全卷积操作实现高效的目标跟踪。
2025-02-27 01:20:50
679
原创 【openCV-75】Siamese网络
Siamese 网络是一种特殊类型的神经网络架构,主要用于处理匹配、相似性比较等任务。其核心思想是通过共享相同的权重,在两个输入样本上学习相似性或差异性。Siamese 网络广泛应用于图像匹配人脸识别签名验证语义相似性计算等任务。
2025-02-26 11:54:40
706
原创 【openCV-74】透视变换
透视变换是计算机视觉中一个重要的图像变换工具,能够通过透视效果对图像进行几何形状的扭曲和变换。它广泛应用于图像矫正、图像配准、增强现实、3D重建等多个领域。通过 OpenCV 等工具,我们可以方便地计算透视变换矩阵并应用变换,实现图像视角的改变。
2025-02-26 11:54:15
515
原创 【openCV-73】图像反畸变
图像反畸变是计算机视觉中的一个重要过程,特别是在使用相机进行测量、建模、导航等任务时,畸变可能会严重影响结果的准确性。通过使用相机的内外参数以及畸变模型,我们可以有效地校正图像中的几何畸变,从而得到更真实、更准确的图像信息。在实际应用中,OpenCV 提供的工具能够高效地帮助我们完成这一过程,使得图像的分析更加准确。
2025-02-26 11:52:06
738
原创 【openCV-72】相机校正的实现
相机标定是计算机视觉中的基础操作,主要用于消除图像中的几何畸变,并恢复真实的世界坐标信息。使用棋盘格图案进行标定是最常见且高效的方法,OpenCV 提供了相应的工具库,使得相机标定变得非常便捷。
2025-02-26 11:51:31
995
原创 【openCV-70】LM算法
高斯牛顿法是一种高效的数值优化算法,广泛应用于非线性最小二乘问题。通过利用目标函数的雅可比矩阵近似代替二阶导数,减少了计算复杂度,尤其适合于曲线拟合和数据拟合问题。虽然它的收敛速度较快,但对于复杂的模型或不良初始点,可能会遇到局部最优解或收敛缓慢的问题。因此,实际应用时需要仔细选择初始值并考虑算法的局限性。
2025-02-26 11:48:18
897
原创 【openCV-69】高斯牛顿法
高斯牛顿法是一种高效的数值优化算法,广泛应用于非线性最小二乘问题。通过利用目标函数的雅可比矩阵近似代替二阶导数,减少了计算复杂度,尤其适合于曲线拟合和数据拟合问题。虽然它的收敛速度较快,但对于复杂的模型或不良初始点,可能会遇到局部最优解或收敛缓慢的问题。因此,实际应用时需要仔细选择初始值并考虑算法的局限性。
2025-02-26 11:47:08
422
原创 【openCV-68】牛顿法
假设我们要求解方程 ( f(x) = 0 ) 的解。牛顿法从一个初始猜测值 ( x_0 ) 开始,通过迭代不断更新 ( x_n ) 的值,直到收敛于方程的根。其中,( f’(x_n) ) 是目标函数的梯度,( f’'(x_n) ) 是目标函数的海森矩阵(即二阶导数矩阵)。假设我们有一个实值函数 ( f(x) ),并希望找到 ( x ) 使得 ( f(x) = 0 )。我们希望找到 ( x ) 使得 ( f(x) = 0 ),即 ( x^2 = 2 ),所以解应该是 ( x = \sqrt{2} )。
2025-02-26 11:41:07
662
原创 【openCV-67】极大似然估计
假设我们有一个概率分布模型,其参数为 ( \theta ),并且我们有一组独立同分布的观测数据 ( X = {x_1, x_2, \dots, x_n} )。
2025-02-26 11:40:36
941
原创 【openCV-66】内参矩阵和外参矩阵
在标定过程中,我们通过一组已知的世界坐标和图像坐标对来估计内参矩阵(如焦距、光心位置)和外参矩阵(如旋转和平移)。这两个矩阵共同构成了相机的投影模型,允许我们将三维世界中的点映射到二维图像中。在计算机视觉、相机标定和三维重建等领域,内参矩阵和外参矩阵是描述相机如何将三维世界映射到二维图像的重要工具。相机标定的过程中,通过已知的物理模型和图像中的特征点,可以估计相机的内外参数。在这个过程中,旋转矩阵 ( R ) 负责点的旋转变换,平移向量 ( T ) 负责点的平移变换。,它使用棋盘格图像来估计相机的内外参。
2025-02-26 11:40:05
1151
原创 【openCV-64】单应性矩阵
单应性矩阵是一个 3x3 的矩阵,表示从一个图像平面到另一个图像平面的透视变换。假设我们有两个平面:一个是原始图像平面,另一个是目标图像平面,单应性矩阵 ( H ) 将原始图像平面上的点映射到目标图像平面上的点。
2025-02-26 11:39:35
1036
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人