898. Bitwise ORs of Subarrays
We have an array A of non-negative integers.
For every (contiguous) subarray B = [A[i], A[i+1], …, A[j]] (with i <= j), we take the bitwise OR of all the elements in B, obtaining a result A[i] | A[i+1] | … | A[j].
Return the number of possible results. (Results that occur more than once are only counted once in the final answer.)
Example 1:
Input: [0]
Output: 1
Explanation:
There is only one possible result: 0.
Example 2:
Input: [1,1,2]
Output: 3
Explanation:
The possible subarrays are [1], [1], [2], [1, 1], [1, 2], [1, 1, 2].
These yield the results 1, 1, 2, 1, 3, 3.
There are 3 unique values, so the answer is 3.
Example 3:
Input: [1,2,4]
Output: 6
Explanation:
The possible results are 1, 2, 3, 4, 6, and 7.
Note:
- 1 <= A.length <= 50000
- 0 <= A[i] <= 10^9
Approach
- 题目大意是问你连续的子数组全部或有多少个不同的数。这是周赛100种的第三道题,没做出来,看了下官方题解,暂时只有暴力解法,那时就看到数据不敢暴力,官方的解法是将用一个局部的hashset记录上次的状态保证了子数组的连续。
Code
class Solution {
public:
int subarrayBitwiseORs(vector<int>& A) {
unordered_set<int>unst;
unordered_set<int>cur;
for (const int&a : A) {
unordered_set<int>cur2;
for (const int&c : cur) {
cur2.insert(c | a);
}
cur2.insert(a);
cur = cur2;
unst.insert(cur.begin(), cur.end());
}
return unst.size();
}
};