5-10 树的遍历 (25分)
给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列。这里假设键值都是互不相等的正整数。
输入格式:
输入第一行给出一个正整数NN(\le 30≤30),是二叉树中结点的个数。第二行给出其后序遍历序列。第三行给出其中序遍历序列。数字间以空格分隔。
输出格式:
在一行中输出该树的层序遍历的序列。数字间以1个空格分隔,行首尾不得有多余空格。
输入样例:
7
2 3 1 5 7 6 4
1 2 3 4 5 6 7
输出样例:
4 1 6 3 5 7 2
二叉树的遍历有三种方式,如下:
(1)前序遍历(DLR),首先访问根结点,然后遍历左子树,最后遍历右子树。简记根-左-右。
(2)中序遍历(LDR),首先遍历左子树,然后访问根结点,最后遍历右子树。简记左-根-右。
(3)后序遍历(LRD),首先遍历左子树,然后遍历右子树,最后访问根结点。简记左-右-根。
所谓层序遍历 : 往下 一层一层遍历
AC代码:
#include<cstdio>
#include<queue>
using namespace std;
const int K = 35;
int h[K],z[K],l[K],r[K];
int gz(int l1,int r1,int l2,int r2){
if(l1 > r1) return 0;
int t = h[r2];
int nl = l1;
while(z[nl] != t) nl++;
int nn = nl - l1;
l[t] = gz(l1,nl - 1,l2,l2 + nn - 1);
r[t] = gz(nl + 1,r1,l2 + nn,r2 - 1);
return t;
}
void sc(int N){
queue <int> q;
int pl = h[N];
printf("%d",pl);
if(l[pl]) q.push(l[pl]);
if(r[pl]) q.push(r[pl]);
while(!q.empty()){
pl = q.front();
q.pop();
printf(" %d",pl);
if(l[pl]) q.push(l[pl]);
if(r[pl]) q.push(r[pl]);
}
return ;
}
int main()
{
int N;
scanf("%d",&N);
for(int i = 1; i <= N; i++)
scanf("%d",&h[i]);
for(int i = 1; i <= N; i++)
scanf("%d",&z[i]);
gz(1,N,1,N);
sc(N);
return 0;
}