python第二次小考作业----利用豆包ai工具完成对小红书关键搜索词数据可视化分析案例

提问过程

豆包处理过程

过程步骤:

项目背景

在小红书平台上,搜索词反映了用户的兴趣和需求。通过对关键搜索词数据进行可视化分析,能够帮助商家、博主等了解热门话题,把握市场趋势,从而制定更有效的营销策略。

数据获取

假设我们已经从第三方工具或者小红书 API 中获取了一定时间范围内的关键搜索词数据,存储在一个 CSV 文件中,文件名为 xiaohongshu_search_words.csv,包含两列:search_word(搜索词)和 search_count(搜索次数)。

数据处理与可视化分析

xiaohongshu-search-word-analysis小红书关键搜索词数据可视化分析 Python 代码

V1

生成 xiaohongshu_search_word_analysis.py

代码解释

  1. 数据读取与查看:使用 pandas 库读取 CSV 文件,并查看数据的基本信息和前几行内容。
  2. 柱状图:找出搜索次数排名前 10 的搜索词,使用 seaborn 库绘制柱状图,直观展示热门搜索词的搜索次数。
  3. 词云图:将所有搜索词连接成一个字符串,使用 wordcloud 库生成词云图,突出显示热门搜索词。
  4. 直方图:使用 seaborn 库绘制搜索次数的直方图,展示搜索次数的分布情况。

分析结论

  • 热门搜索词:通过柱状图可以直观地看到哪些搜索词是最热门的,商家和博主可以针对这些热门话题创作内容,提高曝光度。
  • 搜索词整体趋势:词云图可以帮助我们快速了解搜索词的整体分布情况,发现潜在的热门趋势。
  • 搜索次数分布:直方图可以让我们了解搜索次数的集中程度,判断搜索行为的分布特征。

未来展望

  • 可以结合时间维度,分析搜索词的热度随时间的变化趋势。
  • 与其他平台的数据进行对比分析,找出小红书平台的独特搜索热点。
  • 对搜索词进行分类,进一步分析不同类别搜索词的热度和发展趋势。

代码主体:

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from wordcloud import WordCloud
import matplotlib.font_manager as fm

# 设置图片清晰度
plt.rcParams['figure.dpi'] = 300

# 设置中文字体
font_path = fm.findfont(fm.FontProperties(family='SimHei'))
plt.rcParams['font.family'] = 'SimHei'

# 读取数据
data = pd.read_csv('xiaohongshu_search_words.csv')

# 查看数据基本信息
print('数据基本信息:')
data.info()

# 查看数据集行数和列数
rows, columns = data.shape

if rows < 100 and columns < 20:
    # 短表数据(行数少于100且列数少于20)查看全量数据信息
    print('数据全部内容信息:')
    print(data.to_csv(sep='\t', na_rep='nan'))
else:
    # 长表数据查看数据前几行信息
    print('数据前几行内容信息:')
    print(data.head().to_csv(sep='\t', na_rep='nan'))

# 绘制搜索次数排名前 10 的搜索词柱状图
top_10 = data.nlargest(10, 'search_count')
plt.figure(figsize=(10, 6))
sns.barplot(x='search_count', y='search_word', data=top_10)
plt.title('搜索次数排名前 10 的搜索词')
plt.xlabel('搜索次数')
plt.xticks(rotation=45)
plt.show()

# 绘制词云图
text = ' '.join(data['search_word'])
wordcloud = WordCloud(font_path=font_path, background_color='white').generate(text)
plt.figure(figsize=(8, 6))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title('搜索词词云图')
plt.show()

# 查看搜索次数的分布情况
plt.figure(figsize=(10, 6))
sns.histplot(data['search_count'], kde=True)
plt.title('搜索次数分布情况')
plt.xlabel('搜索次数')
plt.ylabel('频数')
plt.show()
    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值