Problem Description
一个长度为len(1<=len<=1000000)的顺序表,数据元素的类型为整型,将该表分成两半,前一半有m个元素,后一半有len-m个元素(1<=m<=len),设计一个时间复杂度为O(N)、空间复杂度为O(1)的算法,改变原来的顺序表,把顺序表中原来在前的m个元素放到表的后段,后len-m个元素放到表的前段。
注意:交换操作会有多次,每次交换都是在上次交换完成后的顺序表中进行。
Input
第一行输入整数len(1<=len<=1000000),表示顺序表元素的总数;
第二行输入len个整数,作为表里依次存放的数据元素;
第三行输入整数t(1<=t<=30),表示之后要完成t次交换,每次均是在上次交换完成后的顺序表基础上实现新的交换;
之后t行,每行输入一个整数m(1<=m<=len),代表本次交换要以上次交换完成后的顺序表为基础,实现前m个元素与后len-m个元素的交换;
Output
输出一共t行,每行依次输出本次交换完成后顺序表里所有元素。
Example Input
10 1 2 3 4 5 6 7 8 9 -1 3 2 3 5
Example Output
3 4 5 6 7 8 9 -1 1 2 6 7 8 9 -1 1 2 3 4 5 1 2 3 4 5 6 7 8 9 -1
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std;
#define LISTMAX 1000010
#define LISTCREATE 10
typedef int status;
typedef int Elemtype;
typedef struct
{
Elemtype *elem;
int length;
int listsize;
}Sqlist;
status Sqinit(Sqlist &L)
{
L.elem=new Elemtype[LISTMAX];
if(!L.elem)exit(-1);
L.length=0;
L.listsize=LISTMAX;
return 1;
}
status Sqcreate(Sqlist &L,int i,Elemtype e)
{
if(i<1||i>L.length+1)
return -1;
if(L.length>=L.listsize)
{
Elemtype*newbase=(Elemtype *)realloc(L.elem,(L.listsize+LISTCREATE)*sizeof(Elemtype));
if(!newbase)exit(-1);
L.elem=newbase;
L.listsize=L.listsize+LISTCREATE;
}
Elemtype *q;
q=&L.elem[i-1];
*q=e;
L.length++;
return 1;
}
void display(Sqlist &L)
{
int i;
for(i=1;i<=L.length;i++)
{
if(i==L.length)
printf("%d\n",L.elem[i-1]);
else
printf("%d ",L.elem[i-1]);
}
}
void exchange(Sqlist &L,int l,int r)
{
int i,t,j;
for(i=l-1,j=r-1;i<(l+r)/2;i++)
{
t=L.elem[i];
L.elem[i]=L.elem[j];
L.elem[j]=t;
j--;
}
}
int main()
{
Sqlist L;
int n,m,i,x,q;
scanf("%d",&n);
Sqinit(L);
for(i=1;i<=n;i++)
{
scanf("%d",&x);
Sqcreate(L,i,x);
}
scanf("%d",&q);
while(q--)
{
scanf("%d",&m);
exchange(L,1,n);
exchange(L,1,n-m);
exchange(L,n-m+1,n);
display(L);
}
return 0;
}