(A+B)*(C-D/E)的后缀表达式: AB+CDE/-*
按照运算顺序写就可以了.
把运算符号写在参与运算的两个量后面.有括号就先算括号里的.
首先(A+B)写成:AB+
在(C-D/E)中:
D/E写成:DE/
再用C减(把DE/看成一个整体往下代即可):CDE/-
再把AB+和CDE/-都看成整体,相乘,乘号写在两式末尾:AB+CDE/-*
Problem Description
对于一个基于二元运算符的后缀表示式(基本操作数都是一位正整数),求其代表的算术表达式的值。
Input
输入一个算术表达式的后缀式字符串,以‘#’作为结束标志。
Output
求该后缀式所对应的算术表达式的值,并输出之。
Example Input
59*684/-3*+#
Example Output
57
#include <string>
#include <algorithm>
#include <cstdio>
using namespace std;
typedef int elemtype;
typedef struct
{
elemtype *top, *base;
} _stack;
void _stackinitial(_stack &s)
{
s.base = (elemtype *)malloc(1000 * sizeof(elemtype));
s.top = s.base;
}
void push(_stack &s, elemtype e)
{
*s.top++ = e;
}
elemtype top(_stack &s)
{
return *(s.top - 1);
}
void pop(_stack &s)
{
s.top--;
}
int em(_stack &s)
{
if (s.base == s.top)
{
return 1;
}
else
{
return 0;
}
}
int main()
{
_stack s;
_stackinitial(s);
char str[110];
int i, a, b, k;
scanf("%s", str);
for (i = 0; str[i] != '#'; i++)
{
if (str[i] >= '0' && str[i] <= '9')
{
push(s, str[i] - '0');
}
else
{
a = top(s);
pop(s);
b = top(s);
pop(s);
if (str[i] == '+')
{
k = a + b;
}
if (str[i] == '-')
{
k = b - a; //注意a,b顺序
}
if (str[i] == '*')
{
k = a * b;
}
if (str[i] == '/')
{
k = b / a; <span style="line-height: 18.5714302062988px; font-family: Menlo, Monaco, Consolas, 'Courier New', monospace;">//注意a,b顺序</span>
}
push(s, k);
}
}
printf("%d\n", top(s));
return 0;
}