最长上升子序列(dp--O(n*logn))

O(n^2)时递推关系简单, 代码实现也简洁, 唯一的问题是n ^ 2的复杂度在题目给的数据量较大时会超时。

这个问题可以用二分来优化。

做法是构造出一个新的有序的DP数列, 用原数列中的数从左到右维护更新新数列。

初始时DP[0] = s[0], 从i = 1时遍历原数列, 将每个遍历的数与DP数列的末尾进行比较, 如果大于末尾, 则把DP数列长度提1将s[i]放在DP数列的最后, 如果小于末尾那么替换掉DP数列中比s[i]大的第一个数。

结束后DP数列的长度就是LIS的长度。

从LIS的性质出发,要想得到一个更长的上升序列,该序列前面的数必须尽量的小。

对于序列1,5,8,3,6,7来说,当子序列为1,5,8时,遇到3时,序列已经不能继续变长了。但是,我们可以通过替换,使“整个序列”看上去更小,从而有更大的机会去变长。这样,当替换5-3和替换8-6完成后(此时序列为1,3,6),我们可以在序列末尾添加一个7了。

那为什么复杂度可以是O(NlogN)呢?

关键就在“替换”这一步上,若直接遍历序列替换,每次替换都要O(N)的时间。但是只要我们再次利用LIS的性质——序列是有序的(单调的),就可以用二分查找,在O(logN)的时间内完成一次替换,所以算法的复杂度是O(NlogN)的。

 

代码:

#include <iostream>
#include <algorithm>
using namespace std;

int main()
{
    int n;
    int a[1100];
    int dp[1100];//记录最大子序列
    int pos[1100];//记录最大子串的下标
    cin>>n;
    for(int i=0;i<n;i++){
        cin>>a[i];
    }
    int j=0;
    dp[0]=a[0];
    pos[0]=0;
    for(int i=1;i<n;i++){
        if(a[i]>dp[j]){
            j++;
            dp[j]=a[i];
            pos[j]=i;
        }
        else{
            //flag表示dp中>=a[i]的第一个数的下标
            int flag=lower_bound(dp,dp+j,a[i])-dp;
//            cout<<flag<<endl;
//            cout<<*lower_bound(dp,dp+j,a[i])<<endl;
            dp[flag]=a[i];
            pos[flag]=flag;
        }
    }

    cout<<j+1<<endl;
//    最长子序列的和
//    int res=0;
//    for(int i=0;i<=j;i++){
//        res+=dp[pos[i]];
//    }
//    cout<<res<<endl;
    return 0;
}


 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值