Dp——最长上升子串、最长上升子序列

这篇博客详细介绍了如何使用动态规划解决最长上升子串和最长上升子序列问题。通过数学建模、状态方程和边界条件的分析,给出了解题思路,并提供了代码实现。样例输入和输出展示了算法的实际应用。
摘要由CSDN通过智能技术生成

最长上升子串

一、题目描述

描述

一个数的子串bi,当b1 < b2 < … < bS的时候,我们称这个子串是上升的。对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子串(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … < iK <= N。如:对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子串,如(1, 7), (3, 5, 9)等等。这些子串中最长的长度是3,比如子序列(3, 5, 9).你的任务,就是对于给定的序列,求出最长上升子串的长度。

输入

输入格式:两行,第1行1个整数n(n<=1000),表示序列长度,第2行n个整数用空格隔开表示具体数值。

输出

输出格式: 一行,一个整数表示最长序列的长度。

样例输入

7
1 7 3 5 9 4 8

样例输出

3

二、解题思路

因为是最优子结构的问题,所以,可以采用动态规划来做。

【数学建模】

定义dp[i]代表以第i个数结尾的最长上升子序列的长度,所以最终的答案那就是整个dp数组中最大的那一个数

下标 原数组 dp数组
1 1 1
2 7 2
3 3 1
4 5 2
5 9 3
6 4 1
7 8 2

ans=max(dp)=3;

【状态方程】

如果A[i](原数组)>A[i-1],则dp[i]=dp[i-1]+1;
否则,dp[i]=1;

【边界(初始化)】

因为第一个一定是一个上升的子串,所以dp[1]=1

三、代码

#include<iostream>
#include<cstdio>
using namespace std;
int n,A[10010],dp[10010],ans;
int main()
{
   
	scanf("%d",
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
最长公共子序列(Longest Common Subsequence, LCS)和最长公共子串(Longest Common Substring)是两个常见的字符串相关问题。 最长公共子序列是指给定两个字符串,要求找到它们之间最长的公共子序列的长度。子序列是从原字符串中删除若干个字符而得到的新字符串,字符在新字符串中的相对顺序与原字符串中的保持一致。动态规划是求解LCS问题的常用方法。 以字符串s1 = "ABCBDAB"和s2 = "BDCAB"为例,可以使用动态规划的方法求解最长公共子序列的长度。首先创建一个二维数组dpdp[i][j]表示s1的前i个字符和s2的前j个字符之间的最长公共子序列的长度,那么有以下推导关系: 1. 当i=0或j=0时,dp[i][j]=0。 2. 当s1[i-1]=s2[j-1]时,dp[i][j] = dp[i-1][j-1] + 1。 3. 当s1[i-1]!=s2[j-1]时,dp[i][j] = max(dp[i-1][j], dp[i][j-1])。 最后,dp[len(s1)][len(s2)]即为最长公共子序列的长度。 对于最长公共子串,要求找到两个字符串中最长的公共连续子串的长度。连续子串是指在原字符串中连续出现的字符子序列。同样可以使用动态规划来解决该问题。 仍以上述两个字符串s1和s2为例,创建一个二维数组dpdp[i][j]表示以s1[i-1]和s2[j-1]为结尾的公共子串的长度,那么有以下推导关系: 1. 当i=0或j=0时,dp[i][j]=0。 2. 当s1[i-1]=s2[j-1]时,dp[i][j] = dp[i-1][j-1] + 1。 3. 当s1[i-1]!=s2[j-1]时,dp[i][j] = 0。 最后,dp矩阵中的最大值即为最长公共子串的长度。 以上就是求解最长公共子序列和最长公共子串的常见方法。在实际应用中,我们可以根据具体的问题选择合适的方法,并结合动态规划来解决这些字符串相关的问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值