题目描述
设一个 nn 个节点的二叉树tree的中序遍历为( 1,2,3,…,n1,2,3,…,n ),其中数字 1,2,3,…,n1,2,3,…,n 为节点编号。每个节点都有一个分数(均为正整数),记第 ii 个节点的分数为 di,treedi,tree 及它的每个子树都有一个加分,任一棵子树 subtreesubtree (也包含 treetree 本身)的加分计算方法如下:
subtreesubtree 的左子树的加分× subtreesubtree 的右子树的加分+ subtreesubtree 的根的分数。
若某个子树为空,规定其加分为 11 ,叶子的加分就是叶节点本身的分数。不考虑它的空子树。
试求一棵符合中序遍历为( 1,2,3,…,n1,2,3,…,n )且加分最高的二叉树 treetree 。要求输出;
(1) treetree 的最高加分
(2) treetree 的前序遍历
输入输出格式
输入格式:
第 11 行: 11 个整数 n(n<30)n(n<30) ,为节点个数。
第 22 行: nn 个用空格隔开的整数,为每个节点的分数(分数 <100<100 )。
输出格式:
第 11 行: 11 个整数,为最高加分(Ans \le 4,000,000,000≤4,000,000,000 )。
第 22 行: nn 个用空格隔开的整数,为该树的前序遍历。
输入输出样例
输入样例#1: 复制
5 5 7 1 2 10
输出样例#1: 复制
145 3 1 2 4 5
只过了样例,看题解dalao都是dp,先存一下以后继续改。。
#include<iostream>
#include<algorithm>
using namespace std;
int ans = 0;
struct node{
int score,left = -1,right = -1;
};
node tree[30];
void dfs(int x, int l, int r){
//cout << x << " " << l << " " << r <<endl;
int m = 100,k;
if(x > l){
for(int i = l; i < x; i ++){
if(m > tree[i].score){
m = tree[i].score;
k = i;
}
}
tree[x].left = k;
dfs(k,l,x-1);
}
m = 100;
if(x < r){
for(int i = x+1; i <= r; i ++){
if(m > tree[i].score){
m = tree[i].score;
k = i;
}
}
tree[x].right = k;
dfs(k,x+1,r);
}
}
void print(int x){
cout << x+1 << " ";
if(tree[x].left != -1)
print(tree[x].left);
if(tree[x].right != -1)
print(tree[x].right);
}
void treesum(int x){
int l,r;
l = tree[x].left;
r = tree[x].right;
if(tree[x].left != -1)
{
treesum(tree[x].left);
l = tree[l].score;
}
else
l = 1;
if(tree[x].right != -1)
{
treesum(tree[x].right);
r = tree[r].score;
}
else
r = 1;
if(r != 1 || l != 1)
tree[x].score = tree[x].score + l * r;
//cout <<x <<" "<< l<<'<' << tree[x].score << '>' <<r<< endl;
//ans += tree[x].score;
}
int main(){
int n,min = 100,minx;
cin >> n;
for(int i = 0; i < n; i ++){
cin >> tree[i].score;
if(min > tree[i].score){
min = tree[i].score;
minx = i;
}
}
dfs(minx,0,n-1);
//for(int i = 0; i < n; i ++)
// cout << i << " " << tree[i].left << " " << tree[i].right << endl;
treesum(minx);
cout << tree[minx].score << endl;
print(minx);
return 0;
}