山东大学2023-2024第二学期深度学习期末考试回忆

一、名词解释(8*3分)

语言模型

梯度确认

共现矩阵

分布式表示

困惑度

截断的BPTT

attention机制

超参数

二、简答题(6*8分)

1.训练数据、测试数据、验证数据的作用,为什么划分训练数据与测试数据

2.batch-normalization三个优点

3.神经网络的学习过程

4.word2vec的计算瓶颈和解决

5.dropout为什么可以降低过拟合

第6个不记得了

三、综合分析题

1.(13分)

(1)256*256的图像,全连接层有10个神经元,输出1000个神经元,忽略偏置,求参数个数(6分)

(2)卷积神经网络的三个特点(3分)

(3)梯度下降法为什么不总是好的的原因?列举另外三种参数更新的方法(4分)

2.(15分)

(1)画出LSTM的内部计算图(5分)

(2)写出三个门的作用(5分)

(3)RNNLM的三种改进方法(5分)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值