我是二师兄
码龄7年
关注
提问 私信
  • 博客:1,028,372
    1,028,372
    总访问量
  • 49
    原创
  • 758,215
    排名
  • 319
    粉丝
  • 1
    铁粉

个人简介:暂时买不起卡宴

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2017-07-17
博客简介:

W_weiying的博客

查看详细资料
个人成就
  • 获得692次点赞
  • 内容获得98次评论
  • 获得2,882次收藏
  • 代码片获得338次分享
创作历程
  • 5篇
    2019年
  • 44篇
    2018年
成就勋章
TA的专栏
  • PYTHON之数据分析
    29篇
  • MYSQL数据库学习指南针
    5篇
  • 机器学习与可视化
  • python
    26篇
  • Python数据分析
    37篇
  • 机器学习算法
    6篇
  • MYSQL
    5篇
  • Tableau
    1篇
兴趣领域 设置
  • 大数据
    hive
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

185人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Python字符串:join与format函数

str.join(): 将字符插入对象中间返回一个长字符串In [1]: print(' and '.join(['Mary'])) print(' and '.join(['Mary','John'])) print(' and '.join(['Mary','John','Amy']))Out [1]: Mary Mary a...
原创
发布博客 2019.07.27 ·
3368 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

Numpy中concatenate与tile函数详解

concatenate((a1,a2,...),axis=0)实现numpy中数据多个数组(a1,a2,...)的拼接,axis=0沿着垂直方向,axis=1沿着水平方向。In [245] a=np.array([[1, 2, 4, 5]]) b=np.array([[3, 4, 6, 7]]) print('Horizontal \...
原创
发布博客 2019.04.26 ·
1764 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

Numpy中vstack与hstack函数源码

vstack与hstack函数Numpy中用来拼接数组的基础函数。vstack( vertical stack):将多个数组沿竖直方向拼接 hstack( horizontal stack):将多个数组沿水平方向拼接In [137] a=np.array([[1, 2, 4, 5],[1, 2, 4, 5]]) b=np.array([[3, 4, 6,...
原创
发布博客 2019.04.25 ·
979 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

scikit-learn cookbook (中文版)

发布资源 2019.04.19 ·
rar

Pandas教程(cookbook)

发布资源 2019.04.19 ·
pdf

MYSQL中导入Excel文件

本文阐述了一般情况下怎么在mysql中导入excel文件,作者借助工具sqlyog,也可以直接在mysql中操作。主要步骤:第一步:首先将excel文件打开另存为csv文件再将其用Notepad打开,将编码改成utf-8保存第二步:先建立数据库列名一致的表格,可参考博客,本文用sqlyog创建,也可直接在mysql里面创建再写导入sqlLOAD DATA IN...
原创
发布博客 2019.04.01 ·
20270 阅读 ·
3 点赞 ·
4 评论 ·
55 收藏

Pandas数据去重:drop_duplicates函数详解

DataFrame.drop_duplicates(subset=None, keep='first', inplace=False)参数解释:subset: 列名,默认所有的列 keep: 是否保留{‘first’, ‘last’, False},keep= 'first' 表示去重时每组重复数据保留第一条数据,其余数据丢弃; keep='last' 表示去重时每组重复数据保留最后一条...
原创
发布博客 2019.01.15 ·
12949 阅读 ·
15 点赞 ·
2 评论 ·
43 收藏

A value is trying to be set on a copy of a slice from a DataFrame

最近在做数据分析的时候,发现在Dataframe中插入一列之后会报这个错误A value is trying to be set on a copy of a slice from a DataFrame.Try using .loc[row_indexer,col_indexer] = value instead源数据如下:In [158]:dataOut[158]: ...
原创
发布博客 2018.12.25 ·
6258 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

Pandas 中Dataframe数据插入: Insert函数 详解

Dataframe.insert(loc, column, value, allow_duplicates=False): 在Dataframe的指定列中插入数据。参数介绍:       loc:  int型,表示第几列;若在第一列插入数据,则 loc=0       column: 给插入的列取名,如 column='新的一列'       value:数字,array,seri...
原创
发布博客 2018.12.25 ·
60484 阅读 ·
27 点赞 ·
0 评论 ·
93 收藏

Pandas中at、iat函数详解

at 函数:通过行名和列名来取值(取行名为a, 列名为A的值)iat 函数:通过行号和列号来取值(取第1行,第1列的值)本文给出at、iat常见的用法,并附上详细代码。1. 首先创建一个DataFrame(data)Out[1]: pd.DataFrame(np.arange(15).reshape(5,3), columns=list('ABC'), index=list('a...
原创
发布博客 2018.12.04 ·
25028 阅读 ·
18 点赞 ·
3 评论 ·
66 收藏

Pandas: Drop函数(Dataframe删除指定行列)

isin函数  (请点击链接:isin函数提取和删除Dataframe指定行列)更多原创PYTHON数据分析博文,请关注博文专栏(超链接:PYTHON数据分析) 本文介绍主要结介绍用Drop函数删除Dataframe指定行列:drop(labels=None, axis=0, index=None, columns=None,             level=None, in...
原创
发布博客 2018.11.29 ·
124285 阅读 ·
81 点赞 ·
4 评论 ·
342 收藏

Pandas中isin函数 Dataframe提取(删除)指定行列

本文介绍主要结介绍用isin函数提取和删除Dataframe指定行列:isin函数(条件前加~表示isin函数的逆函数)1. 返回含有具体条件的dataframe, 如返回 'A'列中含有 [4,8] 的dataframe( 用逆函数对筛选后的结果取余,起删除指定行作用 )IN [1]: dataOut[1]: A B C D0 0 1 2 31 ...
原创
发布博客 2018.11.29 ·
27212 阅读 ·
38 点赞 ·
1 评论 ·
199 收藏

List快速去重(Python)

利用Set函数函数(set() 函数创建一个无序不重复元素集,可进行关系测试,删除重复数据,还可以计算交集、差集、并集等)In [1]: test=[1,2,3,4,2,3]In [2]: set(test)Out [2]: {1, 2, 3, 4}In [3]: list(set(test))Out [3]: [1, 2, 3, 4] ...
原创
发布博客 2018.11.26 ·
8732 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

指定位置打开Jupyter Notebook

突然心血来潮,可能也是好久没更新博客了吧,回忆以前刚开始使用Jupyter的时候,也是一头雾水。今天跟一些刚开始用的朋友们分享一个很简单,但也很实用的技巧 "指定位置打开Jupyter Notebook"。建议安装 Anconda, 里面集成了 Jupyter Notebook.举例:一个excel文件在D盘中,路径:D:\python code\JupyterCode\test.xl...
原创
发布博客 2018.11.08 ·
1775 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Python3创建字典(Dict)的几种常规方法

1.常规创建字典In [1]: dict1 = {'a':1, 'b':2, 'c':3}In [2]: print(dict1)Out[2]: {'a': 1, 'b': 2, 'c': 3}2. 利用zip函数和 dict函数创建字典In [3]: list1 = ['a', 'b', 'c']; list2 = [1, 2, 3]; dict1 = dict(zip(l...
原创
发布博客 2018.10.15 ·
11385 阅读 ·
2 点赞 ·
2 评论 ·
14 收藏

Two Sum(python)两数相加

题目:Two Sum Given nums = [2, 7, 11, 15], target = 9, Because nums[0] + nums[1] = 2 + 7 = 9, return [0, 1].第一步:用 zip 函数做一个字典,将nums中数字与index联系起来:In [33]: dictionary = dict(zip(nums, li...
原创
发布博客 2018.10.09 ·
1942 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Pandas中multiindex转换成列

Multiindex格式如下:(a, b, c, ...),index column (a1,b1,c1) d1 (a2,b2,c2) d2 直接调用函数reset_index(),Multiindex中(a, b, c, ...)就变成columns了,index重置为(0,1,2,...), 如下:index       colum...
原创
发布博客 2018.09.10 ·
12673 阅读 ·
6 点赞 ·
1 评论 ·
5 收藏

Numpy中random.choice函数的用法举例

random.choice( list or array) 函数: 在list 或者 array中取一个数。In [1]: np.random.choice([1,2,3,4,5]) #随机选一个数字Out [1]: 2In [2]: np.random.choice([1,2,3,4,5]) #随机选一个数字Out [2]: 4In [3]: np.random.choi...
原创
发布博客 2018.08.27 ·
3107 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

Numpy中reshape函数、reshape(1,-1)的含义(浅显易懂,源码实例)

本文详细介绍numpy中reshape函数的三种常见相关用法。一般用法:numpy.arange(n).reshape(a, b); 依次生成n个自然数,并且以a行b列的数组形式显示:In [1]: np.arange(16).reshape(2,8) #生成16个自然数,以2行8列的形式显示Out[1]: array([[ 0, 1, 2, 3, 4, 5, 6, ...
原创
发布博客 2018.08.27 ·
66680 阅读 ·
38 点赞 ·
4 评论 ·
121 收藏

Pandas将多个Sheet写入到本地同一Excel文件中

直接上代码import pandas as pd#读取两个表格data1=pd.read_excel('文件路径')data2=pd.read_excel('文件路径')#将两个表格输出到一个excel文件里面writer=pd.ExcelWriter('D:新表.xlsx')data1.to_excel(writer,sheet_name='sheet1')data2.t...
原创
发布博客 2018.08.06 ·
14035 阅读 ·
7 点赞 ·
1 评论 ·
23 收藏
加载更多