大意不再赘述。
思路:由于23,28,33互素,所以可以用中国剩余定理来求解。
x≡a1(mod m1)
x≡a2(mod m2)
…
x≡ak(mod mk)
其中,m1,m2..mk互素。方程的一个解就是a1*x1*m1+a2*x2+m2....+ak*xk*mk,这个解加减M的整数倍之后就可以得到最小非负解。
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int MAXN = 1010;
int A[MAXN], R[MAXN];
int times;
int d;
int M;
void ex_gcd(int a, int b, int &d, int &x, int &y)
{
if(!b) { d = a; x = 1; y = 0;}
else { ex_gcd(b, a%b, d, y, x); y -= x*(a/b);}
}
int read_case()
{
A[0] = 23, A[1] = 28, A[2] = 33;
scanf("%d%d%d%d", &R[0], &R[1], &R[2], &d);
if(d == -1) return 0;
return 1;
}
int ChinaRemain(int r)
{
M = 1;
int d, x, y;
int ans = 0;
for(int i = 0; i < r; i++) M *= A[i];
for(int i = 0; i < r; i++)
{
int Mi = M/A[i];
ex_gcd(Mi, A[i], d, x, y);
ans = (ans+R[i]*Mi*x) % M;
}
if(ans < 0) ans += M;
return ans;
}
void solve()
{
int ans = ChinaRemain(3);
while(ans <= d) ans += M;
printf("Case %d: the next triple peak occurs in %d days.\n", ++times, ans-d);
}
int main()
{
times = 0;
while(read_case())
{
solve();
}
return 0;
}