POJ3468-A Simple Problem with Integers

一道经典的线段树区间更新的题,你值得拥有!

#include <cstdio>

#define lchild rt << 1, l, m
#define rchild rt << 1 | 1, m + 1, r

const int maxn = 1 << 18;

long long tree[maxn];
long long lazy[maxn];

int n;

void push_up(int rt) {
    tree[rt] = tree[rt<<1] + tree[rt<<1|1];
}

void push_down(int rt, int len) {
    tree[rt<<1] += lazy[rt] * (len - (len >> 1));
    lazy[rt<<1] += lazy[rt];
    tree[rt<<1|1] += lazy[rt] * (len >> 1);
    lazy[rt<<1|1] += lazy[rt];
    lazy[rt] = 0;
}

void build(int rt = 1, int l = 1, int r = n) {
    if (l == r) {
        scanf("%lld", &tree[rt]);
        return;
    }
    int m = (l + r) >> 1;
    build(lchild);
    build(rchild);
    push_up(rt);
}

void update(int L, int R, int delta, int rt = 1, int l = 1, int r = n) {
    if (L <= l && r <= R) {
        tree[rt] += delta * (r - l + 1);
        lazy[rt] += delta;
        return;
    }
    if (lazy[rt]) {
        push_down(rt, r - l + 1);
    }
    int m = (l + r) >> 1;
    if (L <= m) {
        update(L, R, delta, lchild);
    }
    if (R > m) {
        update(L, R, delta, rchild);
    }
    push_up(rt);
}

long long query(int L, int R, int rt = 1, int l = 1, int r = n) {
    if (L <= l && r <= R) {
        return tree[rt];
    }
    if (lazy[rt]) {
        push_down(rt, r - l + 1);
    }
    int m = (l + r) >> 1;
    long long ret = 0;
    if (L <= m) {
        ret += query(L, R, lchild);
    }
    if (R > m) {
        ret += query(L, R, rchild);
    }
    return ret;
}

int main(int argc, char const *argv[]) {
    int q;
    scanf("%d%d", &n, &q);
    build(1, 1, n);
    for (int i = 0; i < q; i++) {
        getchar();
        int ch;
        if ((ch = getchar()) == 'Q') {
            int x, y;
            scanf("%d%d", &x, &y);
            printf("%lld\n", query(x, y));
        } else {
            int x, y, z;
            scanf("%d%d%d", &x, &y, &z);
            update(x, y, z);
        }
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值