一道经典的线段树区间更新的题,你值得拥有!
#include <cstdio>
#define lchild rt << 1, l, m
#define rchild rt << 1 | 1, m + 1, r
const int maxn = 1 << 18;
long long tree[maxn];
long long lazy[maxn];
int n;
void push_up(int rt) {
tree[rt] = tree[rt<<1] + tree[rt<<1|1];
}
void push_down(int rt, int len) {
tree[rt<<1] += lazy[rt] * (len - (len >> 1));
lazy[rt<<1] += lazy[rt];
tree[rt<<1|1] += lazy[rt] * (len >> 1);
lazy[rt<<1|1] += lazy[rt];
lazy[rt] = 0;
}
void build(int rt = 1, int l = 1, int r = n) {
if (l == r) {
scanf("%lld", &tree[rt]);
return;
}
int m = (l + r) >> 1;
build(lchild);
build(rchild);
push_up(rt);
}
void update(int L, int R, int delta, int rt = 1, int l = 1, int r = n) {
if (L <= l && r <= R) {
tree[rt] += delta * (r - l + 1);
lazy[rt] += delta;
return;
}
if (lazy[rt]) {
push_down(rt, r - l + 1);
}
int m = (l + r) >> 1;
if (L <= m) {
update(L, R, delta, lchild);
}
if (R > m) {
update(L, R, delta, rchild);
}
push_up(rt);
}
long long query(int L, int R, int rt = 1, int l = 1, int r = n) {
if (L <= l && r <= R) {
return tree[rt];
}
if (lazy[rt]) {
push_down(rt, r - l + 1);
}
int m = (l + r) >> 1;
long long ret = 0;
if (L <= m) {
ret += query(L, R, lchild);
}
if (R > m) {
ret += query(L, R, rchild);
}
return ret;
}
int main(int argc, char const *argv[]) {
int q;
scanf("%d%d", &n, &q);
build(1, 1, n);
for (int i = 0; i < q; i++) {
getchar();
int ch;
if ((ch = getchar()) == 'Q') {
int x, y;
scanf("%d%d", &x, &y);
printf("%lld\n", query(x, y));
} else {
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
update(x, y, z);
}
}
return 0;
}