1.堆基础
堆:完全二叉树
或者是近似完全二叉树
大根堆:每个结点的值都大于或等于其左右孩子结点的值。(从前至后头序)
小根堆:每个结点的值都小于或等于其左右孩子结点的值。(从后至前头序)
堆排序要解决的问题:
【1】如何由一个无序序列构建成一个堆。=>堆的调整其实就是从下往上,从右到左的调整。
【2】如果在输出堆顶元素后,调整剩余元素成为一个新的堆???
2.堆的存储
一般都用数组来表示堆
i的父结点下标:
(i – 1) / 2
i的左结点下标:
2 * i + 1
i的右结点下标:
2 * i + 2
如第0个结点左右子结点下标分别为1和2。
2.da根堆排序思路
逻辑思路:
首先可以看到堆建好之后堆中第0个数据是堆中最大的数据。取出这个数据再执行下堆的删除操作。这样堆中第0个数据又是堆中最大的数据,重复上述步骤直至堆中只有一个数据时就直接取出这个数据。
void buildHeap(int *arr, int len)
//建立大根堆堆
{
for (int i = len / 2; i >= 0; --i)
{
heapAdjustUp(arr, i, len); //大根堆调整
}
}
物理操作:
由于堆也是用数组模拟的,故堆化数组后,第一次将A[0]与A[n - 1]交换,再对A[0…n-2]重新恢复堆。第二次将A[0]与A[n – 2]交换,再对A[0…n - 3]重新恢复堆,重复这样的操作直到A[0]与A[1]交换。由于每次都是将最大的数据并入到后面的有序区间,故操作完成后整个数组就有序了。有点类似于
直接选择排序
。
void HeapSortMax(int *arr, int len)
//大根堆排序
{
if (arr == NULL || len<1) return; //检错
buildHeap(arr, len); //建立大顶堆(根结点元素已经是最大元素)
for (int i=len-1; i>0; --i) //进行排序
{
swap( arr[0],arr[i]); //第一元素和最后一个元素进行交换(将最大元素后置)
heapAdjustUp(arr, 0, i-1); //将剩下的无序元素继续调整为大顶堆
}
}
大
根堆调整思路:
堆中每次都只能删