云计算和大数据简答题习题(含答案)

本文深入探讨大数据现象的形成,分析大数据的特点与应用,解释新摩尔定律,详述云计算的特性与服务类型,对比Hadoop1.0与Hadoop2.0的优缺点,讨论虚拟化技术在云计算中的关键作用,以及OpenStack在云计算领域的地位。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载声明:本文转自CSDN博主「mez_Blog」的原创文章
原文链接:https://blog.csdn.net/mez_Blog/article/details/80865220

1. 大数据现象是怎样形成的?

(1) 数据产生方式的改变

(2) 人类的活动越来越依赖数据

(3) 各行各业也越来越依赖大数据手段来开展工作

当数据量、数据的复杂程度、数据处理的任务要求等超出了传统数据存储与计算能力时,称之为“大数据(现象)”。

大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。

2. 新摩尔定律的含义是什么

每18个月全球新增信息量是计算机有史以来全部信息量的总和。

3. 云计算有哪些特点

(1) 超大规模
  “云”具有相当的规模,Google云计算已经拥有100多万台服务器, Amazon、IBM、微软、Yahoo等的“云”均拥有几十万台服务器。企业私有云一般拥有数百上千台服务器。“云”能赋予用户前所未有的计算能力。
(2) 虚拟化
  云计算支持用户在任意位置、使用各种终端获取应用服务。所请求的资源来自“云”,而不是固定的有形的实体。应用在“云”中某处运行,但实际上用户无需了解、也不用担心应用运行的具体位置。只需要一台笔记本或者一个手机,就可以通过网络服务来实现我们需要的一切,甚至包括超级计算这样的任务。
(3) 高可靠性
  “云”使用了数据多副本容错、计算节点同构可互换等措施来保障服务的高可靠性,使用云计算比使用本地计算机可靠。
(4) 通用性
  云计算不针对特定的应用,在“云”的支撑下可以构造出千变万化的应用,同一个“云”可以同时支撑不同的应用运行。
(5) 高可扩展性
  “云”的规模可以动态伸缩,满足应用和用户规模增长的需要。
(6) 按需服务
  “云”是一个庞大的资源池,你按需购买;云可以像自来水,电,煤气那样计费。
(7) 极其廉价
  由于“云”的特殊容错措施可以采用极其廉价的节点来构成云,“云”的自动化集中式管理使大量企业

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值