云计算和大数据简答题习题(含答案)

本文深入探讨大数据现象的形成,分析大数据的特点与应用,解释新摩尔定律,详述云计算的特性与服务类型,对比Hadoop1.0与Hadoop2.0的优缺点,讨论虚拟化技术在云计算中的关键作用,以及OpenStack在云计算领域的地位。
摘要由CSDN通过智能技术生成

转载声明:本文转自CSDN博主「mez_Blog」的原创文章
原文链接:https://blog.csdn.net/mez_Blog/article/details/80865220

1. 大数据现象是怎样形成的?

(1) 数据产生方式的改变

(2) 人类的活动越来越依赖数据

(3) 各行各业也越来越依赖大数据手段来开展工作

当数据量、数据的复杂程度、数据处理的任务要求等超出了传统数据存储与计算能力时,称之为“大数据(现象)”。

大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。

2. 新摩尔定律的含义是什么

每18个月全球新增信息量是计算机有史以来全部信息量的总和。

3. 云计算有哪些特点

(1) 超大规模
  “云”具有相当的规模,Google云计算已经拥有100多万台服务器, Amazon、IBM、微软、Yahoo等的“云”均拥有几十万台服务器。企业私有云一般拥有数百上千台服务器。“云”能赋予用户前所未有的计算能力。
(2) 虚拟化
  云计算支持用户在任意位置、使用各种终端获取应用服务。所请求的资源来自“云”,而不是固定的有形的实体。应用在“云”中某处运行,但实际上用户无需了解、也不用担心应用运行的具体位置。只需要一台笔记本或者一个手机,就可以通过网络服务来实现我们需要的一切,甚至包括超级计算这样的任务。
(3) 高可靠性
  “云”使用了数据多副本容错、计算节点同构可互换等措施来保障服务的高可靠性,使用云计算比使用本地计算机可靠。
(4) 通用性
  云计算不针对特定的应用,在“云”的支撑下可以构造出千变万化的应用,同一个“云”可以同时支撑不同的应用运行。
(5) 高可扩展性
  “云”的规模可以动态伸缩,满足应用和用户规模增长的需要。
(6) 按需服务
  “云”是一个庞大的资源池,你按需购买;云可以像自来水,电,煤气那样计费。
(7) 极其廉价
  由于“云”的特殊容错措施可以采用极其廉价的节点来构成云,“云”的自动化集中式管理使大量企业

### 关于云计算大数据技术的练习题与学习资源 #### 一、选择题示例 对于理解云计算的基础概念,可以考虑如下题目: - **单选题**:云计算是对哪些技术的发展与运用?选项包括并行计算、网格计算以及分布式计算。正确答案是三个选项都是[^2]。 #### 二、填空题示例 为了加深对大数据特性的了解,可尝试解答此类型的题目: - 填入适当词语完成句子:“大数据具备四个显著特征,分别是大量的数据规模(Volume),快速的数据流转速度(___),多样的数据类型(___),以及潜在的价值(Value)。” 正确填写应为Velocity(高速),Variety(多样)[^3]。 #### 三、简答题示例 针对更深入的理解技术应用层面的知识掌握情况评估,则可以通过简答形式来进行测试: - 描述当前主流的大数据分析框架有哪些组成部分? - 当前大数据平台通常包含但不限于以下几个部分:用于收集原始数据的大数据采集平台;负责大规模离线作业执行的大数据批处理平台;专门应对实时性需求较高的场景下的流数据处理平台;还有支持高性能运算任务的内存计算平台;以及专注于复杂模型训练工作的深度学习平台等[^4]。 #### 四、编程实践建议 除了理论上的考核外,实际操作技能同样重要。推荐通过参与开源项目贡献代码或者模仿构建小型云服务实例来增强动手能力。比如利用Python实现简单的MapReduce算法模拟器,或是基于Docker搭建个人私有云端环境进行实验探索。 ```python def map_reduce_example(data_list, mapper_func, reducer_func): mapped_data = [] for item in data_list: result = mapper_func(item) if result is not None: mapped_data.extend(result) reduced_result = {} for key, value in mapped_data: if key not in reduced_result: reduced_result[key] = [] reduced_result[key].append(value) final_results = {k:reducer_func(v) for k,v in reduced_result.items()} return final_results ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值