自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 深度学习:分类任务

网络深度:AlexNet 相对较浅,VGG 有不同深度版本但整体比 AlexNet 深,ResNet 则可以构建非常深的网络结构,深度可扩展性更强。卷积核大小:AlexNet 使用了较大的卷积核(如 11x11、5x5),VGG 主要使用 3x3 的小卷积核,ResNet 同样以小卷积核为主,重点在于残差连接的设计。解决的问题:AlexNet 主要解决了训练速度和过拟合问题,VGG 通过小卷积核提高了模型的表达能力,ResNet 则主要解决了深度网络训练中的梯度消失和退化问题。

2025-03-08 16:55:25 1843

原创 深度学习:回归实战

同样的,此处可引用一个类mynet,继承自 PyTorch 的。

2025-03-01 17:19:55 1693

原创 深度学习:简单线性模型训练

2.x = torch.normal(0, 1, (data_num, len(w))),用于生成一个张量x。在真实世界中,数据往往不会完全符合理论模型,存在测量误差或其他未考虑的因素,噪声的加入正是为了模拟这些情况,使得生成的数据集更适合训练和测试模型,形状参数`y.shape`,这确保生成的噪声张量与y的维度完全一致,无论是y是向量还是矩阵,都能正确逐元素相加,避免维度不匹配的错误。x的形状是(data_num, len(w)),而w是一个向量,它的长度是len(w)。

2025-02-28 16:42:34 1117 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除