- 博客(3)
- 收藏
- 关注
原创 深度学习:分类任务
网络深度:AlexNet 相对较浅,VGG 有不同深度版本但整体比 AlexNet 深,ResNet 则可以构建非常深的网络结构,深度可扩展性更强。卷积核大小:AlexNet 使用了较大的卷积核(如 11x11、5x5),VGG 主要使用 3x3 的小卷积核,ResNet 同样以小卷积核为主,重点在于残差连接的设计。解决的问题:AlexNet 主要解决了训练速度和过拟合问题,VGG 通过小卷积核提高了模型的表达能力,ResNet 则主要解决了深度网络训练中的梯度消失和退化问题。
2025-03-08 16:55:25
1843
原创 深度学习:简单线性模型训练
2.x = torch.normal(0, 1, (data_num, len(w))),用于生成一个张量x。在真实世界中,数据往往不会完全符合理论模型,存在测量误差或其他未考虑的因素,噪声的加入正是为了模拟这些情况,使得生成的数据集更适合训练和测试模型,形状参数`y.shape`,这确保生成的噪声张量与y的维度完全一致,无论是y是向量还是矩阵,都能正确逐元素相加,避免维度不匹配的错误。x的形状是(data_num, len(w)),而w是一个向量,它的长度是len(w)。
2025-02-28 16:42:34
1117
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人