基于R语言的DICE模型实践丨农田生态系统温室气体排放模拟

随着温室气体排放量的增大和温室效应的增强,全球气候变化问题受到日益的关注。气候变化问题不仅仅是科学的问题,同时也是经济问题。为了综合评估气候变化及其带来的经济影响,很多经济-气候的综合模型被开发出来;其中2018年诺贝尔经济学奖得主W.D.Nordhaus开发的DICE型是运用最广泛的综合模型之一。DICE和RICE模型虽然代码量不多,但涉及经济学与气候变化,原理较为复杂。帮助气候、环境及生态领域的学者使用DICE模型。

【教 程】基 于 R 语 言 的 DICE模型 实 践 技 术 应 用

专题一:DICE模型的原理与推导
1.经济学相关概念的回顾
2.气候变化问题
3.DICE模型的经济学部分
4.DICE模型的气候相关部分
5.DICE模型的目标函数与经济约束
6.DICE模型使用的地球物理方程

专题二:碳循环与气候变化
1.能源市场上的均衡
2.生产函数及其校准
3.碳供给的影响
4.碳循环与其它辐射强迫
5.气候变化影响评估

专题三:政策评估
1.Baseline策略
2.最优政策
3.稳定全球排放情况下的影响
4.保持气候稳定允许的政策

专题四:不确定性分析与代码分析
1.模型方程总结与回顾
2.全局敏感性方法与敏感参数选择
3.参数不确定性的影响
4.DICE模型的求解方法
5.DICE模型R语言代码详解


双碳目标下农田温室气体排放模拟

当前全球温室气体大幅升高,过去170年CO2浓度上升47%,这种极速变化使得物种和生态系统的适应时间大大缩短,进而造成全球气候变暖、海平面上升、作物产量降低、人类心血管和呼吸道疾病加剧等种种危害。在此背景下,代表可持续发展的“碳中和”目标被提出,即追求净零排放,实现经济增长与资源消耗脱钩。
农业是甲烷(CH4)、氧化亚氮(N2O)和二氧化碳(CO2)等温室气体的主要排放源,占全产业排放的13.5%。农田温室气体又以施肥产生的N2O和稻田生产产生的CH4为主,如何对农田温室气体进行有效模拟,不确定性较大。
从生命周期评价法(LCA)、经验模型和过程模型三个维度讲解农田温室气体排放的模拟,详细介绍甲烷(CH4)、氧化亚氮(N2O)和二氧化碳(CO2)的排放过程以及模拟技术,掌握农田温室气体排放的模拟技术。

【教 程】双 碳 目 标下 农 田 温 室 气 体 排 放 模 拟

专题一

温室气体排放模拟研究

1. 农田温室气体前沿应用

农田温室气体排放的经典实验设计

农田温室气体排放的全球数据整合

农田温室气体排放的模拟研究

专题

农田CH4和N2O排放模拟

1. 农田CH4排放的模拟研究

1)甲烷(CH4)排放的过程

2)CH4排放的模拟研究

3)CH4排放的经验算法和过程算法

4)CH4排放程序的编写

2. 农田N2O排放的模拟研究

1)氧化亚氮(N2O)排放的过程(氮素的硝化作用与反硝化作用)

2)N2O的模拟的主流方法和模型

3)N2O排放的模拟练习

专题

农田碳库模型和土壤呼吸

1 农田主流碳库分解模型

1)碳库的概念

2)一级动力学碳库方程

3)主流碳库模型及其算法

4)两三库模型的编写和呼吸CO2的模拟

专题

基于生命周期评价法的农田温室气体排放估算

1 生命周期评价法

1)生命周期评价法介绍

2)生命周期排放清单数据库

2 自下而上的农田碳排放估算

1)生命周期边界的设定

2)不同农业活动情景下农田温室气体排放估算

专题-六

基于过程模型的温室气体排放模拟

1. DSSAT模型土壤养分动态过程及温室气体排放的模拟

1)DSSAT模型的CH4模拟

2)DSSAT模型的N2O模拟

3)DSSAT模型的CO2模拟

4)DSSAT模型的总温室气体和作物生产模拟

2. DSSAT模型温室气体模拟的实操练习

3. 不同农田管理情景下温室气体的模拟

专题

更多案例模拟与疑难解答

1 不同作物、不同情景下温室气体排放的模拟

2 实例回顾、训练、巩固

3 答疑与讨论(大家提前把问题整理好)

●生命周期模型构建方法与分析及实际案例应用
●基于LEAP模型的能源环境发展、碳排放建模预测及不确定性分析
●最新DSSAT作物模型建模方法及实践技术应用
●基于Python语言快速批量运行DSSAT模型及交叉融合、扩展应用
●农田通量计算方法与应用

Dice模型是一种常用的经济学模型,可以用来解释不同变量之间的相互作用和影响。R语言是一种非常流行的开源编程语言,适合进行数据分析和可视化。在使用Dice模型时,可以使用R语言来编写相关的代码,实现数学模型的计算和绘图。 以下是基于R语言Dice模型代码示例: 首先需要导入相关的包和数据,例如: ``` library(ggplot2) library(readr) df <- read_csv("data.csv") ``` 其中,数据可以采用csv格式,通过read_csv函数将数据导入到R语言中。 然后可以定义Dice模型的参数和函数,例如: ``` savings_rate <- 0.2 labor_growth <- 0.02 capital_share <- 0.3 elasticity <- 0.5 production_function <- function(labor, capital) { labor^elasticity * capital^(1-elasticity) } climate_damage_function <- function(temperature) { if (temperature < 2) { 0 } else { (temperature - 2)^2 } } utility_function <- function(consumption, population) { consumption * (1 - 1 / (1 + population_growth_rate))^(time_discount_rate) } ``` 在这里,定义了一些常量和函数,例如储蓄率、劳动力增长率、资本份额、弹性系数、生产函数、气候损害函数和效用函数等。 接着可以编写Dice模型的主函数,例如: ``` dice_model <- function(carbon_emissions, temperature_increase) { global_output <- production_function(global_labor, global_capital) global_population <- global_population * (1 + population_growth_rate) per_capita_output <- global_output / global_population total_production <- per_capita_output * global_population_scale consumption <- total_production - carbon_emissions total_utility <- utility_function(consumption, global_population_scale) climate_damage <- climate_damage_function(temperature_increase) net_benefit <- total_utility - social_cost_of_carbon * carbon_emissions - climate_damage return(net_benefit) } ``` 其中,输入量是碳排放量和温度增长量,输出量是净收益。主函数中还会用到前面定义的各种参数和函数。 最后,可以通过绘图展示Dice模型的计算结果,例如: ``` carbon_emissions <- seq(0, 100, 0.5) temperature_increase <- seq(0, 10, 0.1) net_benefit_matrix <- outer(carbon_emissions, temperature_increase, dice_model) ggplot(melt(net_benefit_matrix), aes(x = Var1, y = Var2, fill = value)) + geom_raster() + scale_fill_gradientn(colors = c("white", "yellow", "orange", "red"), limits = c(-1000, 4000), breaks = seq(-1000, 4000, 1000), name = "Net benefit") + labs(x = "Carbon emissions", y = "Temperature increase") + theme_classic() ``` 这段代码可以绘制一个热力图,展示碳排放量和温度增长量对净收益的影响。通过这个图可以更直观地理解Dice模型的计算结果。 总之,基于R语言Dice模型代码可以非常方便地实现数学模型的计算和可视化,使得经济学研究更加方便和高效。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值