目录
聚焦目前遥感应用最热门领域之一的林业,重点结合典型应用案例综合展示GEE云平台的使用技巧和强大功能,提升参会人员解决实际问题的能力。以JavaScript版本GEE为主进行讲解,先介绍GEE基本知识,再结合微型案例对关键知识进行串讲,最后结合林业应用典型案例进行综合讲解。为了提高教学质量,
将结合最先进的ChatGPT、文心一言等AI自然语言模型辅助教学,协助学员解答疑惑、提供针对性建议和指导,不仅让学员更深入地掌握学习内容,还为今后自主学习提供高效的个性化的学习体验。
一 平台及基础开发平台
GEE平台及典型应用案例介绍
GEE开发环境及常用数据资源介绍
ChatGPT、文心一言等GPT模型介绍、帐号申请及林业遥感应用
JavaScript基础简介
GEE遥感云重要概念与典型数据分析流程
GEE基本对象介绍、矢量和栅格对象可视化、属性查看,API查询、基本调试等平台上手
二 GEE基础知识与ChatGPT等AI模型交互
影像基本运算与操作:数学运算、关系/条件/布尔运算、形态滤波、纹理特征提取;影像掩码、裁剪和镶嵌等;
要素基本运算与操作:几何缓冲区,交、并、差运算等;
集合对象操作:循环迭代(map/iterate)、合并Merge、联合(Join);
数据整合Reduce:包括影像与影像集整合,影像合成、影像区域统计与域统计,分组整合与区邻域统计,影像集线性回归分析等;
机器学习算法:包括监督(随机森林、CART、SVM、决策树等)与非监督(wekaKMeans、wekaLVQ等)分类算法,分类精度评估等;
数据资产管理:包括本地端矢量和栅格数据上传、云端矢量和栅格数据下载、统计结果数据导出等;
绘图可视化:包括条形图、直方图、散点图、时间序列等图形绘制。
GPT模型交互:结合上述基本知识点和ChatGPT、文心一言等AI工具进行交互演示,包括辅助答疑、代码生成与修正等技巧。
三 重要知识点微型案例串讲与GPT模型交互演示
1)Landsat、Sentinel-2影像批量自动去云和阴影
2)联合Landsat和Sentinel-2批量计算植被指数和年度合成
3)研究区可用影像数量和无云观测数量统计分析
4)中国区域年度NDVI植被数合成及年度最绿DOY时间查找
5)时间序列光学影像数据的移动窗口平滑
6)分层随机抽样及样本导出、样本本地评估与数据上传云端
7)中国近40年降雨量变化趋势分析
8)某区域年度森林损失统计分析(基于Hansen森林产品)
四 典型案例综合演练
案例一:联合多源遥感数据的森林识别
详细介绍联合Landsat时间序列光学影像和PALSAR-2雷达数据,以及决策树算法实现森林等典型地类遥感分类的完整流程。专题涉及影像数据时空过滤、光学影像批量云掩膜与植被指数计算;分层随机抽样及样本导出、本地端质量控制与云端上传、样本随机切分、可分离性分析、分类算法构建及应用、分类后处理和精度评估,专题图绘制等。
案例二:长时间尺度的森林
状态监测 利用长时间序列的MODIS或Landsat影像数据,对森林状态进行长期监测,分析森林植被绿化或褐变情况。专题涉及时间序列影像预处理、影像集连接、影像合成、变化趋势非参数检测、显著性检验和变化趋势量化与分级、空间统计和结果可视化和专题图绘制等。
案例三:森林砍伐与退化监测
联合Landsat系列影像,光谱分离模型和NDFI归一化差值分数指数实现森林的砍伐和退化监测。专题涉及影像预处理、混合像元分解、NDFI指数计算、函数封装、变化检测和强度分级,结果可视化、专题图绘制等。
案例四:森林火灾监测
详细介绍利用Landsat和Sentinel-2时间序列光学遥感影像,监测森林火灾损失情况,实现火灾强度分级。专题涉及影像过滤、Landsat和Sentinel-2光学影像除云等预处理、植被指数计算、影像合成、火灾区域识别和灾害强度分级,结果统计分析与可视化等。
案例五:长时间尺度的森林扰动监测
联合30年的Landsat等光学影像和经典LandTrendr算法实现森林扰动的监测。专题涉及长时间序列遥感影像预处理、植被指数批量计算、年度影像合成、数组影像概念和使用方法、LandTrendr算法原理及参数设置、森林扰动结果解译与空间统计分析、可视化及专题图绘制等。
案例六:森林关键生理参数
(树高、生物量/碳储量)反演 联合GEDI激光雷达、Landsat/Sentinel-2多光谱光学影像、Sentinel-1 /PALSAR-2雷达影像等和机器学习算法反演森林的关键物理参数,如树高、生物量/碳储量。专题涉及GEDI激光雷达数据介绍、常见光学和雷达数据处理、机器学习算法应用、反演精度评估和变量重要性分析、结果可视化等内容。
更多推荐
●GEE【JS-GEE版本】海量遥感数据处理实践
●GEE遥感云大数据在林业中的应用与典型案例
●GEE-Python遥感大数据分析、管理与可视化
GPT模型支持下的Python-GEE遥感云大数据分析、管理与可视化技术及多领域案例应用_WangYan2022的博客-CSDN博客掌握Earth Engine的实际应用能力,将以Python编程语言为基础,结合案例从平台搭建、影像数据分析、本地和云端数据管理,以及云端数据论文出版级可视化等方面进行讲解和进阶训练。https://blog.csdn.net/WangYan2022/article/details/130280490?spm=1001.2014.3001.5502