SVM简述

  1. SVM 原理
    SVM 是一种二类分类模型。它的基本思想是在特征空间
    中寻找间隔最大的分离超平面使数据得到高效的二分类,
    具体来讲,有三种情况(不加核函数的话就是个线性模型,
    加了之后才会升级为一个非线性模型):
    当训练样本线性可分时,通过硬间隔最大化,学习一个线性分类器,即线性可分支持向量机;
    当训练数据近似线性可分时,引入松弛变量,通过软间隔最大化,学习一个线性分类器,
    即线性支持向量机;
    当训练数据线性不可分时,通过使用核技巧及软间隔最大化,学习非线性支持向量机。

  2. SVM 为什么采用间隔最大化(与感知机的区别):
    当训练数据线性可分时,存在无穷个分离超平面可以将两类数据正确分开。
    感知机利用误分类最小策略,求得分离超平面,不过此时的解有无穷多个。
    线性可分支持向量机利用间隔最大化求得最优分离超平面,这时,解是唯一的。
    另一方面,此时的分隔超平面所产生的分类结果是最鲁棒的,对未知实例的泛化能力最强。

  3. 如何选择核函数:
    当特征维数 d 超过样本数 m 时 (文本分类问题通常是这种情况), 使用线性核;
    当特征维数 d 比较小. 样本数 m 中等时, 使用RBF核;
    当特征维数 d 比较小. 样本数 m 特别大时, 支持向量机性能通常不如深度神经网络

4.常见的核函数
LIBSVM中提供的核函数
线性核函数
多项式核函数
RBF核函数(高斯核函数)
sigmoid核函数

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
SVM(支持向量机)求解预测值的过程可以概括为以下几个步骤: 1. **训练阶段**:在训练阶段,SVM 使用训练数据集来学习一个决策边界,以将不同类别的样本正确分类。这涉及到通过最小化目标函数来寻找最优的决策边界参数。 2. **特征转换**:在训练阶段,SVM 使用一个核函数将输入数据映射到高维特征空间。这个过程可以使数据在新的特征空间中更容易分开。常见的核函数包括线性核、多项式核、径向基函数(RBF)核等。 3. **支持向量选择**:SVM 在训练过程中选择一部分支持向量,这些向量是离决策边界最近的样本点。支持向量对于决策边界的确定起着关键作用。 4. **预测阶段**:在预测阶段,SVM 使用训练阶段得到的模型参数和支持向量,对新的未知样本进行预测。预测过程涉及计算未知样本与支持向量之间的距离,并将其映射到决策边界上。 具体而言,对于二分类问题,SVM 在预测阶段会计算未知样本与决策边界之间的距离。如果距离小于零,预测为负类;如果距离大于零,预测为正类。在多类别问题中,可以使用一对多(One-vs-All)策略,将多个二分类器组合起来进行预测。 需要注意的是,在使用 SVM 进行预测之前,通常需要对输入数据进行与训练数据相同的特征转换和标准化处理。这是因为 SVM 在训练过程中对数据的分布和尺度是敏感的。 总结来说,SVM 求解预测值的过程涉及训练阶段的模型参数学习、特征转换和支持向量选择,以及预测阶段的距离计算和类别预测。这样可以根据学习到的模型,对新的未知样本进行分类预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小金子的夏天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值