Python 网络爬虫笔记11 -- Scrapy 实战

本文介绍使用Scrapy框架爬取中国股市股票信息的实战案例,从东方财富网获取股票列表,再到百度股票获取个股详细信息,并将数据存储到本地文件。涵盖Scrapy工程搭建、Spider编写、数据解析与存储等关键步骤。
摘要由CSDN通过智能技术生成

Python 网络爬虫笔记11 – Scrapy 实战


Python 网络爬虫系列笔记是笔者在学习嵩天老师的《Python网络爬虫与信息提取》课程及笔者实践网络爬虫的笔记。

课程链接:Python网络爬虫与信息提取
参考文档:
Requests 官方文档(英文)
Requests 官方文档(中文)
Beautiful Soup 官方文档
re 官方文档
Scrapy 官方文档(英文)
Scrapy 官方文档(中文)


股票数据 Scrapy 爬虫


介绍:

步骤:

  1. 建立工程和 Spider 模板

    # cmd 依次输入以下命令
    scrapy startproject scrapy_stocks
    cd scrapy_stocks
    scrapy genspider stocks gupiao.baidu.com
    
  2. 编写Spider,处理链接爬取和页面解析

    • 配置stocks.py文件
    • 修改对返回页面的处理
    • 修改对新增URL爬取请求的处理
  3. 编写ITEM Pipelines,处理信息存储

    • 配置pipelines.py文件
    • 定义对爬取项(Scraped Item)的处理类
    • 配置ITEM_PIPELINES选项
    # 在settings.py文件中配置ITEM_PIPELINES选项,改为自己写的类名
    ITEM_PIPELINES = {'scrapy_stocks.pipelines.ScrapyStocksPipeline': 300,}		
    
  4. 运行爬虫

    # cmd输入以下命令
    scrapy crawl stocks
    
  5. 配置优化

    修改 settings.py文件的相应项

    说明
    NCURRENT_REQUESTSDownloader最大并发请求下载数量,默认32
    NCURRENT_ITEMSItem Pipeline最大并发ITEM处理数量,默认100
    NCURRENT_REQUESTS_PER_DOMAIN每个目标域名最大的并发请求数量,默认8
    NCURRENT_REQUESTS_PER_IP每个目标IP最大的并发请求数量,默认0,非0有效

stocks.py 文件:

# -*- coding: utf-8 -*-
import scrapy
import re

class StocksSpider(scrapy.Spider):
    name = "stocks"
    start_urls = ['http://quote.eastmoney.com/stocklist.html']

    def parse(self, response):
        """
        解析 Response 对象,产生额外的爬取请求
        """

        for href in response.css('a::attr(href)').extract():
            try:
                stock = re.findall(r's[hz]\d{6}', href)[0]
                url = 'https://gupiao.baidu.com/stock/' + stock + '.html'
                yield scrapy.Request(url, callback=self.parse_stock)
            except:
                continue

    def parse_stock(self, response):
        """
        解析 Response 对象
        """
        info_dict = {}
        stock_info = response.css('.stock-bets')
        name = stock_info.css('.bets-name').extract()[0]
        key_list = stock_info.css('dt').extract()
        value_list = stock_info.css('dd').extract()
        for i in range(len(key_list)):
            key = re.findall(r'>.*</dt>', key_list[i])[0][1:-5]
            try:
                val = re.findall(r'\d+\.?.*</dd>', value_list[i])[0][0:-5]
            except:
                val = '--'
            info_dict[key] = val

        info_dict.update({'股票名称': re.findall('\s.*\(', name)[0].split()[0] + re.findall('\>.*\<', name)[0][1:-1]})
        yield info_dict

pipelines.py 文件:

class BaiduStocksPipeline(object):
    """
    直接返回解析结果
    """
    def process_item(self, item, spider):
        return item


class BaiduStocksInfoPipeline(object):
    """
    保存解析结果到文件
    """
    def open_spider(self, spider):
        self.f = open('BaiduStockInfo.txt', 'w')

    def close_spider(self, spider):
        self.f.close()

    def process_item(self, item, spider):
        try:
            line = str(dict(item)) + '\n'
            self.f.write(line)
        except:
            pass
        return item

settings.py 文件:

ITEM_PIPELINES = {
    'scrapy_stocks.pipelines.BaiduStocksInfoPipeline': 300,
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值